Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Закон действующих первый

    Все химические реакции формально делятся на реакции нулевого, первого, второго порядка и т. д. По тому, как фактически идет процесс, т. е. сколько молекул участвует одновременно в элементарном акте реакции, различают истинный порядок реакции молекулярный, бимолекулярный и т. д. Формально порядок определяется суммой всех показателей степеней концентраций в выражении закона действия масс щ + п + Пз +. -. + Пк. [c.289]


    Как видно из (222.8), скорость реакции не зависит от концентрации Аг- На первый взгляд, зто —отклонение от закона действующих масс. На самом деле это отклонение кажущееся, поскольку в каждой из стадий закон действующих масс соблюдается, а уравнение (222.8) — суммарное. Промежуточное соединение А1Х в процессах (П) называют промежуточным веществом Вант-Гоффа (кислотноосновной катализ). Примером процесса (П) служит реакция бро-мирования ацетона, катализируемая ионами водорода, скорость которой не зависит от концентрации брома. При другом соотношении [c.621]

    Л. Вильгельми изучил влияние концентрации на скорость инверсии тростникового сахара, катализируемой кислотами, и показал, что и [сахар] [кислота]. Это первая формулировка закона действия масс. [c.369]

    Предположим, что самым медленным является первый процесс, т. е. адсорбция. Можно считать, что другие процессы, как более быстрые, уже достигли равновесия. Применяя закон действующих масс, скорость процесса можно представить в виде [c.117]

    При выводе уравнения закона действующих масс в реальных системах, казалось бы, логично использовать тот же путь, что и для идеальных систем, привлекая при рассуждениях вместо уравнения состояния, справедливого для идеальных газов, уравнения для реальных газов. Этим путем в свое время пошел Ван-Лаар при исследовании состояния равновесия в реальных системах. Однако при таком рассмотрении равновесия встретились трудности, связанные в первую очередь с тем, что нет общего уравнения состояния для реальных газов, справедливого в широком интервале давлений. Если же при выводе уравнения для энергии Гиббса газовой смеси воспользуемся одним из приближенных уравнений состояния, например уравнением [c.270]

    В первом приближении можно положить, что в случае гетерогенных химических реакций закон действия масс остается справедливым. Тогда из уравнения реакции обмена двух одновалентных ионов А+ и В+ [c.102]

    К этому обратимому последовательному процессу можно применить закон действующих масс. Поскольку речь идет о разбавленных растворах, активность воды будем считать равной 1. Тогда, воспользовавшись экспериментальными данными, можно записать для первой и второй констант реакции образования иона [Ag(NH3)2]+ [c.420]

    Действие первого закона Вревского ограничено областью состояний, далеких от критического. [c.235]

    Выражение (У.16) является математической записью закона действия масс для обратимой реакции. Его можно вывести исходя из кинетических представлений 1) в первый момент скорость прямой [c.129]


    Равновесие, устанавливающееся при ионообменных процессах, в первом приближении может быть выражено законом действия масс. Из уравнения обмена двух одновалентных ионов А и В [c.68]

    Закон действующих масс выведен с помощью закона идеальных газов и применим в первую очередь для идеально-газовых смесей. Однако его без существенных изменений можно применять и к значительному числу гетерогенных равновесий, например с участием твердых веществ и газов. Запишем гетерогенную реакцию в общем виде  [c.156]

    Таким образом метод Льюиса позволяет сохранить для реальных систем (газовых смесей и растворов) форму уравнений, и в первую очередь закона действующих масс, выведенных для идеальных систем. В то же время этот метод не вносит в термодинамику каких-либо новых принципов. Он предлагает путь не преодоления трудностей, возникающих при изучении равновесий в реальных системах, а как бы обхода их стороной. Дело в том, что для нахождения летучестей, входящих в выражение (V.200), используются или какие-либо уравнения состояния реального газа, или непосредственно опытные данные р — V — Т. [c.161]

    Первую задачу метрики — установление зависимости между выходом и составом — Н. Н. Степанов решил на основании приложения закона действия масс. [c.235]

    Поскольку концентрация СЬ входит в выражение закона действия масс в первой степени, то очевидно, что для увеличения скорости в 16 раз давление хлора также необходимо увеличить в 16 раз. [c.123]

    Порядок реакции — это сумма показателей степеней при концентрациях веществ в уравнении закона действия л осс. Например, скорость реакции (I) описывается уравнением (И.82) поэтому она второго порядка. Скорость реакции (П) — уравнением (П.84) следовательно, это реакция первого порядка. [c.140]

    Из уравнений (У.2) и (У.З) можно определить изменение концентраций реагентов во времени. Подставляя соотношение (У.2) в уравнение закона действия масс реакции первого порядка у = кС, получаем [c.117]

    В ме, анизмах 1 и /, первой стадией является обратимая и быстрая (нелимитирующая) реакция образования группировки (MX L)Y. Эта группировка фактически является внешнесферным ассоциатом [MXr,L]Y, Концентрацию ее в ходе реакции можно считать равновесной и подчиняющейся закону действующих масс  [c.382]

    Равновесие при обмене ионов достигается в результате одновременного действия сил различной природы, и оно может быть в первом приближений списано законом действия масс  [c.286]

    Используя уравнения (V.2) и (V.3), можно определить изменение концентрации реагентов во времени. Подставив соотношение (V.2) в уравнение закона действующих масс реакций первого порядка v = k , получим [c.111]

    Как и в случае частиц без внутренней структуры, интегралы столкновений записаны при двух следующих основных допущениях. Первое из них является общим почти для всех вариантов использования уравнений Больцмана и заключается в достаточной степени разреженности всей смеси, чтобы можно было учитывать только интегралы бинарных столкновений. Второе допущение состоит в предположении обратимости всех процессов, что и позволяет объединить интегралы прямых и обратных столкновений. Этот вопрос имеет принципиальное значение, так как выше было показано, что принцип микроскопической обратимости является необходимым и достаточным условием выполнения закона действующих масс в системе с одной химической реакцией. Кроме того, в работе Черчиньяни [193] в общем случае (без выписывания //-функции и определения условий равновесия) было показано, что //-теорема остается справедливой для классического газа многоатомных молекул, если уравнения движения обратимы во времени. [c.32]

    Подставляя соотношение (У.5) в уравнение закона действующих масс реакции первого порядка, получаем [c.112]

    Выражение (V.28) является математической записью закона действующих масс для обратимой реакции. Его можно вывести исходя из кинетических представлений 1) в первый момент скорость прямой реакции V определяется начальными концентрациями исходных веществ А и В и имеет максимальное значение, а скорость обратной реакции Ъ равна нулю (рис. V.9) 2) по мере накопления продуктов реакции М и N скорость прямой реакции падает, так как уменьшаются концентрации исходных веществ А и В 3) в какой-то момент 1 скорости прямой (о) и обратной (1Г) реакций становятся равными система приходит к состоянию химического равновесия. Условие равновесия описывается равенством (V.27), согласно которому [c.125]

    Приближение (V. 111), однако, является очень грубым. Смесь различных молекулярных образований неидеальна хотя бы потому, что мономерные молекулы и ассоциаты отличаются по размеру, и более оправданным было бы приближение атермического раствора. Последнему отвечает запись закона действующих масс через об. доли компонентов или об. концентрации. Так, для первой из реакций (V. 106) запишем  [c.256]

    Ионообменное равновесие достигается в результате одновременного действия сил различной природы. В первом приближении оно может быть описано законом действия масс. [c.142]

    В первой части книги, где рассмотрены теоретические основы химии, увеличена доля материала, содержащего наиболее фундаментальные понятия, используемые в большинстве естественных наук и в смежных специальных дисциплинах. Прежде всего это периодический закон химических элементов, являющийся базой всех понятий о строении веществ — от атомов до комплексных соединений, — и закон действующих масс как основа количественных расчетов реагентов в равновесных химических системах. Кроме того, в общетеоретической части представлены законы и понятия стехиометрии, строение и фазовые состояния веществ, закономерности протекания химических процессов, образование растворов и ионно-обменные процессы, протекающие в них, реакции окисления—восстановления. [c.3]


    Существует ряд причин, почему второе начало термодинамики относят к наиболее трудным для изучения законам физики. Первая нз них состоит в том, что второе начало необходимо было сначала открыть и сформулировать в виде некоторого суждения (постулата) о свойствах тепловых машин, следствием которого явился вывод о существовании новой функции состояния — энтропии S. В качестве такого постулата выступает, например, утверждение невозможно построить периодически действующую машину, производящую работу за счет теплоты наименее нагретых тел системы . Однако в этой формулировке нет ни слова об энтропии. В отличие от большинства законов теоретической физики фактическое содержание второго начала термодинамики — введение в обиход науки новой функции состояния S — отделено от исходного постулата достаточно длинной цепью логических построений, а из самого постулата совершенно не очевидно указанное выше утверждение. Кроме того, можно привести ряд внешне совсем несхожих утверждений, которые с равным основанием могут считаться формулировками второго начала. [c.37]

    Если смешать водород с иодом в закрытом сосуде и наблюдать за происходящей там реакцией, постепенное исчезновение фиолетовой окраски паров иода будет свидетельствовать о том, что иод расходуется в реакции. Эта реакция впервые исследовалась немецким химиком Максом Бо-денштейном в 1893 г. В табл. 4-1 приведены экспериментальные данные, полученные Боденштейном. Эти данные помещены в трех первых колонках таблицы в четвертой колонке указано простое отношение концентраций продуктов и реагентов вида [Н1]/[Н2] [12], чтобы проверить, не является ли постоянным это отношение. Как мы видим, оно не постоянно, а при уменьшении концентрации водорода и увеличении концентрации иода изменяется от 2,60 до значений, меньших 1. Согласно закону действия масс (см. разд. 4-3), выражение для константы равновесия должно включать квадрат концентрации [Н1], поскольку в уравнении реакции на каждый моль Н2 и 1, приходятся 2 моля Н1. Данные, приведенные в пятой колонке таблицы, показывают, что отношение [Н1] /[Н2] [12] действительно остается постоянным с точностью около 3%. Следовательно, это отношение действительно представляет собой константу равновесия, и среднее значение для шести указанных экспериментальных условий составляет 50,53. [c.176]

    Н. Н. Бекетов четко установил (1865) значение зависимости направления химического процесса от концентрации реагирующих веществ, обосновав обширными и удачными опытами то положение, которое позднее в математической форме было выражено законом действия 1асс. Бекетов изучал также и восстанавливающую способность одних металлов по отношению к другим он первым установил высокую восстанавливающую способность металлических алюминия и магния. [c.16]

    Реакцип ионообмена обратимы. На основе закона действия масс можно определить константы равновесия, например, для двух первых реакций  [c.339]

    Оригинальная концепция гетерогенного зарождения цепей И, действия ингибиторов в термическом крекинге алканов была развита в последние годы [108, 65]. Согласно этой теории, зарождение цепей происходит на стенках реакционного сосуда путем необратимого распада молекул алкана на радикалы с выбросом последних в объем, где развиваются цепи. Эти необратимые химические реакции алкана с поверхностью обусловлены наличием свободных валентностей на некаталитических стенках, подобных кварцевой поверхности. В результате этого химического взаимодействия алкана со свежей поверхностью в начальной стадии возникает в зоне крекинга концентрация свободных радикалов, превыщающая равновесную. Это определяет более высокую скорость в начале крекинга. Начальная стадия крекинга протекает как неравновесная, при этом некаталитическая поверхность выступает на положении инициатора цепного распада. Однако по мере протекания реакции свободные валентности поверхности закрываются и стенки утрачивают свою химическую активность. Вследствие этого концентрация радикалов уменьшается довольно быстро до квазистационарной, а скорость к )екинга резко падает и затем изменяется по закону реакций первого порядка. На этих более глубоких стадиях крекинга стенки способны только к участию в обратимых процессах диссоциации молекул алканов и рекомбинации образованных радикалов, в результате которых устанавливается квазиравковесная концентрация радикалов, определяемая тер- [c.54]

    Первые сообщения об ионообменной адсорбции были сделаны в 1850 г. независимо друг от друга английскими учеными Томпсоном и Уэем. Изучая способность почв к поглощению удобрений и их вымывание дождем, они обнаружили явление обмена ионов между почвой и водными растворами солей. Несмотря на то что поглощение почвой солей (например, получение питьевой воды из морской) было известно уже в древности, серьезные исследования этого явления начались именно с указанных работ. Удовлетворительное объяснение обмена ионов (обратимость процесса, эквивалентность обмена) стало возможным только после открытия закона действия масс (1876 г.). Вещества, проявляющие способность к ионному обмену и используемые для адсорбции ионов, получили название ионообменников или ионитов. [c.164]

    В 1867 г. норвежские ученые К. Гульдберг (1836—1902) и П. Вааге (1833— 1900) на основании изучения трудов Бертолле и тщательной экспериментальной проверки их достоверности предложили первое математическое описание влияния концентрации реагирующих веществ на выход продуктов реакции. Выводы, полученные ими, в окончательной форме в 1877 г. были высказаны голландским физико-химиком Я. X. Вант-Гоффом и общепризнаны под наименованием закона действия масс. [c.131]

    Пример. Ацетальдегид разлагается в газовой фазе следующим образом СНзСОН = СН4 + СО. Присутствие паров иода заметно ускоряет реакцию. Известно, что первая стадия каталитического процесса СН3СОН + 12 = СНз1+ Н1+ С0 протекает медленнее второй. Напишите уравнение реакции для второй стадии и уравнение, выражающее закон действия масс для каталитической реакции в целом. [c.57]

    Большинство реакций аналитической химии протекает в растворе. Глубокое изучение и понимание этих реакций невозможно без выполнения многочисленных ра1Счето1В на основе закона действия масс и других фундаментальных соотношений. Поэтому первая часть сборника посвящена задачам а расчет ионных равновесий, возникающих в растворе при проведении химико-аналитических реакций. За исключением специальной главы расчеты выполнялись В предположении, что закон действия масс применим в его классической форме, т. е. в терминах концентраций. Вопрос об учете коэффициентов активности кратко рассматривается в гл. VI. Это не означает, что эффект ионной силы не следует изучать до проработки материала первых пяти глав. [c.6]

    Задачей физической химии, а точнее термохимии и термодинамики, и является определение тепловых эффектов химических реакций, их зависимости от условий и в первую очередь от температуры. Изучение тепловых явлений, сопровождающих химические реакции, а также некоторых термических свойств реагирующих веществ, а именно их энтропий и теплоемкостей, позволяет установить общие критерии самопроизвольного течения реакции, а также критерии равновесия. При этом в результате некоторых приближений можно вывести один из важных законов химии — закон действующих масс, открытый на основании иных предположений норвежскими учеными Гульдбергом и Вааге (1867). Суть дела можно свести к возможности теоретического вычисления константы равновесия (Кр) и определению [c.5]

    Экспериментальные и расчетные данные показывают, что наряду с известными очень слабыми электролитами, характеризующимися большим положительным значением рК, растворы которых содержат очень мало ионов и очень много недиссоциированных молекул, могут быть электролиты с отрицательными величинами рК, т. е. с константами много больше единицы. Растворы таких электролитов содержат очень мало молекул и очень много ионов. В растворах тех и других электролитов существует равновесие между ионами и недиссоциированными незаряженными частицами. Однако обнаружить малое число непроводящих частиц — молекул на фоне большого числа ионов значительно труднее, чем обнаружить малое число ионов в присутствии большого избытка молекул. Поэтому казалось, что первые не подчиняются закону действия масс. Неприложимость закона действия масс усугублялась еще сильным электролитическим взаимодействием между ионами (см. гл. П1), Естественно, что подобные электролиты были выделены в особый класс — сильных электролитов. Выделение класса сильных электролитов в свое время и было сделано именно вследствие неприложимости к их диссоциации в водных растворах закона действия масс, а также вследствие установления для большинства из них ионной кристаллической решетки. Однако образование этими веществами иониой кристаллической решетки в твердом состоянии еще не исключает возможности образования ими молекул с полярными связями в парообразном состоянии, находящимися в равновесии со своими димерами. С другой стороны, многие ионные кристаллы, как оказалось, имеют элементы молекулярной решетки. [c.303]

    Первая попытка установить связь между скоростью реакций и концентрацией реагентов была сделана Н. Н. Бекетовым (1865). Более строго эту закономерность установили в 1867 г. скандинавские ученые химик Гульдберг и математик Вааге. Закон действия масс — соотношение, лежащее в основе химической кинетики. Он строго выполняется только для гомогенных реакций, протекающих в разбавленных растворах, или при взаимодействии газов, близких к идеальным, т. е. находящихся под низким давлением. [c.138]

    В случае идеальных растворов закон действующих масс справедлив при всех концентрациях и температурах, а концентрации следует выражать в мольных долях. Давление паров над идеальными растворами, состоящими из двух летучих веществ, изменяется в зависимости от состава по линейному закону в соответствии с законом Рауля (рис. VI.5). Ось абсцисс на этом рисунке ограничена условием Vi+iV2 = l и каждая точка оси соответствует раствору любого состава. Зависимость давления пара первого вещества от его мольной доли Ni передается прямой линией, начинающейся в точке Ni = = 0, где N2=1, и оканчивающейся в точке р при Ni = l и N2 = 0. Подобным образом проведена и прямая линия для второго вещества, которое является более летучим, поскольку р1>р. Общее давление пара над раствором Роб равно сумме парциальных давлений обоих веществ Роб = р +р2 или, учитывая закон Рауля, po6 = plNi- plN2-Так как A/i = l—N2, то [c.76]

    Сложные реакции могут быть совокупностью параллельно или последовательно протекающих процессов. Закон действую щих масс справедлив для каждой отдельной стадии реакции, но не для всего взаимодействия в целом. Та стадия процесса, скорость которой минимальна, лимитирует скорость реакции в общем. Поэтому математическое выражение закона действующих масс, записанное для самой медленной (лимитирующей) стадии процесса, приложимо одновременно и ко всей реакции в целом. Если в приведенном примере стадия (1) является само и медленной, лимитирующеи скорость всего процесса, то в применении к этой сУадии реакции закон действующих масс (У.З) запишется как и = йСАСв Это соотношение представит зависимость от концентрации реагентов А и В не только скорости первой стадии реакции, но и всего процесса. [c.110]


Смотреть страницы где упоминается термин Закон действующих первый: [c.258]    [c.157]    [c.61]    [c.70]    [c.85]    [c.159]    [c.160]    [c.116]    [c.26]   
Физическая химия (1987) -- [ c.11 , c.35 ]




ПОИСК





Смотрите так же термины и статьи:

Глава III. Первая группа катионов j Теоретические вопросы Закон действующих масс

Закон действия масс. Реакции первого и второго порядков

Закон действующих

Закон действующих масс — 78. Реакции первого и второго порядка — 79. Обратимые реакции — 82. Влияние температуры. Температурный коэффициент Вант-Гоффа — 87. Температурные границы жизни

Закон первый

Первый закон термодинамики в действии. Термохимия

Термодинамика, первый закон для под действием магнитного пол



© 2025 chem21.info Реклама на сайте