Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Процесс ионного обмена

    Ионообменные смолы — это высокомолекулярные нерастворимые соединения, способные набухать в водных растворах, поглощая значительное количество воды, и высвобождать ионы в процессе электролитической диссоциации. Высвободившиеся ионы замещаются на другие присутствующие в растворе ионы, имеющие большее сродство к ионообменнику. Процесс ионного обмена обратим, и [c.340]


    Ионообменная хроматография, имея свои особенности, подчиняется общим законам сорбции. На процесс ионного обмена оказывают влияние природа ионообменника и ионов раствора, а также ряд экспериментальных факторов параметры колонки, размер зерен ионообменника, скорость пропускания раствора, состав подвижной фазы, температура и др. [c.224]

    Набухание непосредственно связано с кинетическими характеристиками ионитов, особенно органических. Оно увеличивает скорость ионного обмена. При обсуждении кинетики процесса ионного обмена обычно рассматривают пять его стадий с учетом взаимной диффузии противоионов 1) диффузия адсорбирующихся ионов из раствора к поверхности ионита, 2) диффузия внутри зерна ионита, [c.169]

    Ионообменный хроматографический метод, основанный на процессе ионного обмена с использованием в качестве ионообменных материалов природных или синтетических неорганических илн органических веществ. Процесс разделения обусловливается различием констант обмена разделяемых компонентов [c.375]

    Ксилозный сироп после фильтрования - направляется на ионообменную очистку. Сведения об общей характеристике ионообменных смол, механизме процесса ионного обмена, требования, предъявляемые к ионитам, их регенерации, приведены в специальной литературе [5]. [c.148]

    Для очистки ксилозных растворов перспективно применение противоточного непрерывного ионного обмена, широко используемого за рубежом для очистки воды [9]. Осуществление непрерывного процесса ионного обмена позволит наряду с сокращением удельных расходов ионитов и регенерирующих агентов улучшить качество очищенных ксилозных растворов. [c.151]

    Соответственно, процессы ионного обмена подразделяются на Н (Na) — катионирование, например  [c.75]

    Поскольку процесс ионного обмена обратим, установление равновесия в системе означает прекращение процесса обессоливания. Поглощающая способность ионита характеризуется его обменной емкостью, равной количеству ионов кальция и магния, которое может поглотить единица объема или массы ионита, выраженное в граммэквивалентах г-экв/м и г-экв/кг. От величины обменной емкости при данном объеме ионита зависит время рабочего цикла ионитовых фильтров. При насыщении ионита он может быть регенерирован промывкой растворами для Н катионитов кислоты. Na катионитов хлорида натрия и для анионитов раствором щелочи. В приведенных выше примерах работы анионитов при этом протекают реакции  [c.75]


    Для математического описания статического равновесия, устанавливающегося в процессе ионного обмена, предложено много формул и уравнений. Одни установлены эмпирически, а другие заимствованы из смежных областей (например, уравнения изотермы адсорбции Фрейндлиха или Лэнгмюра), или выведены исходя из закона действия масс. [c.81]

    В процессе ионного обмена, по аналогии с адсорбцией, происходит перемещение вытесняющих ионов из раствора к поверхности ионита и вытесняемых ионов — от этой поверхности в раствор (внешняя диффу- [c.580]

    Коэффициент селективности может быть больше, меньше или равен единице. Если /Са, в>1, то иои В+, находяш,ийся в растворе, имеет большее сродство к иониту, чем ион А+, обмен происходит в сторону замещения иона А+ в ионите на нон В+. Если /Са,б<1, то направление процесса ионного обмена меняется. Наконец, при сродство ионов А+ и В+ к нониту одинаково. [c.103]

    Типы осадочных хроматограмм. Рассмотрим условия образования осадочных хроматограмм. Возможны три варианта без прямого участия твердой фазы—осадителя с участием осадителя, введенного в твердую фазу, и в процессе ионного обмена на ионите. [c.164]

    Процессы ионного обмена находят широкое применение в промышленности для технологических целей и в лабораторной практике для решения аналитических задач. Поэтому в настоящее время разработаны методы получения ряда синтетически.х ионитов с наперед заданными свойствами, а производство ионитов достигает значительных размеров. [c.147]

    При проведении процесса ионного обмена в статическом варианте между раствором и ионитом устанавливается состояние равновесия, которое можно описать константой ионного обмена к%1 - Для реакции, записанной в общем виде для катионного и анионного обмена (без указания знаков зарядов обменивающихся ионов) [c.317]

    Анионообменники применяют как в ОН -форме, когда имеются обменные ионы гидроксила, так и в хлоридной, карбонатной и других формах. Процессы ионного обмена с участием ионов Н+ или ОН сопровождаются изменением pH раствора. [c.341]

    Процесс ионного обмена представляется так. Вначале ион, содержащийся в растворе (вытесняющий ион), попадает на поверхность ионита, а затем диффундирует в его объем к той точке, где происходит акт обмена. Вытесняемый ион диффундирует из объема ионита к поверхности и далее переходит в объем раствора. Объем ионита в процессе ионного обмена может измениться. Поэтому в теориях, рассматривающих равновесие при ионном обмене, учитываются эти изменения. [c.221]

    Процессы ионного обмена играют важную роль в ряде природных процессов. Они определяют состав почв, минеральных лечебных вод и т. д. В силу сказанного ионообменный процесс приобрел в горной промышленности большое значение при обработке сточных рудничных вод. При добыче полезных ископаемых ионообменные явления приобретают большое специфическое значение при общей характеристике свойств горных пород и минералов, составляющих данный массив. Не менее важными они являются и в процессах обогащения и окускования. Например, в производстве окатышей (специальные полупродукты металлургии, состоящие из обогащенных железных руд и глинистых связующих), их качество определяется емкостью обмена применяемых глин. [c.191]

    Этот процесс ионного обмена можно рассматривать как результат двух сопряженных процессов  [c.360]

    Для факультетов водоснабжения и процессов очистки промышленных и сточных вод следует глубже, чем для других, рассмотреть вопросы химии соединений азота, фосфора и серы, а также процессы ионного обмена. [c.4]

    Большое число реакций в газах, растворах, на границах раздела (металл — раствор, раствор — раствор и др.) протекает при участии ионов. К ним относятся плазмохимические и электрохимические процессы, различные ионные реакции в растворах, процессы ионного обмена, экстракции и т. п.  [c.198]

    Ионообменная бумага [33]. При проведении бумажной хроматографии на обычных сортах бумаги в щелочных средах процессы распределения перекрываются ионообменными процессами. Действие ионообменной бумаги основано на использовании процессов ионного обмена для разделения веществ. Ионообменную бумагу получают при дополнительной химической обработке карбокси-, сульфо-, аминогрупп целлюлозы или в процессе получения ионообменных смол, смешивая их с бумажной массой. Свойства такой бумаги подобны свойствам ионитов в зернах. Ионообменную бумагу можно применять для проведения быстрых прикидочных опытов в случае длительных разделений. [c.359]

    Главное преимущество совместного применения катионитов и анионитов заключается в том, что ионообменное равновесие может быть резко сдвинуто в желаемом направлении благодаря образованию малодиссоциированного, труднорастворимого или летучего соединения из ионов, выделяемых ионитами в раствор в процессе ионного обмена. Для многих практических случаев, в частности для очистки от электролитов некоторых антибиотиков, нейтральных аминокислот, сахарных растворов и т. д., использование одного ионита нежелательно, так как приводит к изменению pH жидкости и, как следствие, к ряду ненужных превращений очищаемых веществ. Это препятствие [c.111]


    Ионный обмен в неводных растворах применяют для очистки органических жидкостей, разделения веществ, труднорастворимых в воде, для катализа процессов ионного обмена. [c.377]

    Ионообменная хроматография основана на различной способности ионов поглощаться ионитом колонки. Проявление хроматограммы проводят при помощи подвижной фазы, которая позволяет хотя бы частично вытеснить сорбированные ионы. С точки зрения определения понятия элюент (разд. 7.3.1) неверно применять термин элюирование к процессам ионного обмена, хотя это встречается в литературе. Время пребывания ионов в колонке определяется энтальпией ионообменных процессов и зависит от соотношения концентраций ионов в растворе. Подвижная фаза может двояким образом оказывать влияние на ионообменный процесс, что можно показать на уравнении (7.4.5). При прохождении растворителя через колонку равновесие-должно быть сдвинуто вправо. С одной стороны, этого можно добиться, повышая концентрацию ионов Н+ (т. е. концентрацию вытесняющего иона),. [c.380]

    Количественно процесс ионного обмена характеризуется емкостью обмена, выражаемой в миллиэквивалентах на 100 г сухого минерала (мэкв/100 г). Установлено, что суммарная емкость обмена составляет (в мэкв/100 г) для бентонитовых глин — 75—105, для каолинов — 8—25, для иллитов — 20—40. [c.280]

    Влияние неорганических веществ на текучесть шламов. Разжижающее действие неорганических электролитов основывается преимущественно на процессах ионного обмена между катионом добавки и катионом, находящимся в диффузионном слое мицеллы шлама. Пример наиболее вероятной схемы реакции, в которой катион добавки Ыа+ замещается ионом Са2+, удерживающим две ми-целлярные частицы, приведен на рис. 8.3. [c.282]

    А. Н. Фрумкин впервые совершенно конкретно сформулировал роль ионного обмена в образовании электродного потенциала. Ионный обмен участвует в создании электродного потенциала наряду с контактной разностью потенциалов, причем процесс ионного обмена протекает таким образом, что значение электродного потенциала отвечает термодинамическому равновесию между металлом и электролитом. [c.219]

    Когда процесс ионного обмена доходит до равновесия, ионит перестает работать — утрачивает способность умягчать воду. Однако любой ионит легко подвергается регенерации. Для этого через катионит пропускают концентрированный раствор Na l (Na2S04) или H l (H2S04). При этом ионы Са " " и Mg " " выходят в раствор, а катионит вновь насыщается ионами Na+ или Н+. Для регенерации анионита его обрабатывают раствором щелочи или соды (последний, вследствие гидролиза карбонатного иона, также имеет щелочную реакцию). В результате поглощенные анионы вытесняются в раствор, а анионит вновь насыщается ионами 0Н . [c.675]

    Природным минеральным анионообменником является апатит [Сав(Р04)зЮН. Минерал апатит содержит основной фосфат кальция известен также его аналог — фторапатит Са5(Р04)з]р, в котором гидроксильные группы замещены фтором. Гидроксильные группы апатита замещаются фтором при обработке растворами, содержащими ионы фтора этот процесс ионного обмена обратим. В апатитах также может протекать и катионный обмен его используют для обработки радиоактивных сбросных растворов, содержащих Sr. [c.41]

    Если скорость диффузии ионов в глубь зерна ионита и обратно одинакова, то процесс ионного обмена, происходящий в объеме частицы, может быть описан законом Фика  [c.99]

    К решению любой аналитической задачи с применением процессов ионного обмена многие исследователи до сих пор подходят эмпирическим путем, в лучшем случае определяя коэффициенты распределения исследуемых ионов на ионите. Подобный подход не является строгим, поскольку величина коэффициента распределения при ионном обмене зависит от параметров опыта (концентрации раствора, pH [c.133]

    В связи с тем, что определение равновесных параметров (констант обмена) сопряжено с большими трудностями, динамика ионного обмена достаточно хорошо разработана лишь для наиболее простого обмена однозарядных ионов. Ряд теорий разработан для случая, когда скорость потока раствора через колонку настолько мала, что в элементарном слое сорбента успевает установиться ионообменное равновесие и тогда отпадает необходимость учета коэффициентов взаимодиффузии ионов в фазе сорбента. Более сложные теории разрабатывались для неравновесных процессов при допущении, что зерна ионита имеют шарообразную форму и одинаковую постоянную величину, т. е. не разбухают и не сжимаются в процессе ионного обмена. [c.180]

    Таким образом, из анализа физико-химических особенностей отмывки ионитов видно, что для этой стадии характерно одновременное проявление диффузионных, тепловых, электрических явлений, явлений гидратации и реологических изменений в материале ионита. Существующие математические модели построены в основном для описания процессов ионного обмена, т. е. для процессов эксплуатации ионита как готового подукта, и не отражают явлений гидратации при смешении жидких фаз они не учитывают одновременного влияния диффузионных, электрических, тепловых явлений, эффектов гидратации и изменения реологических свойств материала ионита. [c.394]

    Успешное развитие аналитической экспрессной системы контроля качества нефтяных и водных продуктов основано на методах авто-детекторной хемосорбционной индикаторно-жидкостной хроматографии. Сущность этих методов заключается в применении индикаторных сорбентов, обеспечивающих хроматографическое разделение анализируемых продуктов и детектирование образующихся зон адсорбции определяемых компонентов и примесей в индикаторных трубках. Производство индикаторных сорбентов было налажено на Щелковском химкомбинате, заводе Диатомит и Сорбполимере . Индикаторные сорбенты получают на основе ионного обмена и хемо-сорбционного комплексообразования в водных растворах индикаторов с последующей дегидратацией конечной продукции. В процессе ионного обмена в качестве модификаторов используются соли различных металлов, среди которых получили применение кобальт и серебро, обеспечивающие голубую, фиолетовую и розовую окраску индикаторных сорбентов. Для получения индикаторных сорбентов берут фракцию с крупностью 0,05-0,15 мм при соотношении сорбент модификатор — I 30, температуре 50-70°С, продолжительности модификации 30-50 мин. Дегидратацию проводят при 110 5 С в течение [c.121]

    Процессы ионного обмена играют важную роль в природе. Они определяют состав природных вод, почв, грунтов, соотношение некоторых химических элементов в земной коре. Иониты применяют для у 1ягчения и полной деминерализации природных вод [c.35]

    В структуре полифосфатов (КРОз)п и (КаРОз)п цепочки (РОз)п образуют нолифосфатные слои, которые соединяются ионами К и Ыа+ (рис. 6). В процессе ионного обмена последние замещаются на н-алкил- и ди-н-алкиламмониевые ионы, которые располагаются между полифосфатными цепочками перпендикулярно их слоям и раздвигают эти слои на расстояния, пропорциональные длине алкиламмониевых цепочек. Алкил-аммониевый полифосфат набухает в спиртах и жирных кислотах, цепочки которых длиннее алкиламмониевых молекул. Это указывает на образование соответствующих соединений включения. Алкилпиридиниевый меркур-амидосульфонат, структура которого имеет в своей основе цепочки [c.32]

    В области почвоведения многие проблемы, например процессы ионного обмена, строение и свойства почвенного поглощающего комплекса, биохимия гумуса и др., также тесно связаны с коллоидной химией. Закономерности, устанавливаемые ею, дают возможность агроному не только глубже поиимать процессы, протекающие в почве, но и в известной мере сознательно их изменять в желаемом направлении. [c.279]

    Процесс ионного обмена протекает стехиометрически. Если, например, катионит в водородной форме RH ввести в раствор, содержащий ионы в системе установится равновесие [c.295]

    Двухзарядные ионы удерживаются сильнее, чем однозарядные, и прочность связи в ряду возрастает с увеличением массы катиона, что подтверждено исследованиями Иенни. Различное поведение катионов в процессе ионного обмена иногда объясняется теорией гидратации катионов, согласно которой в водных растворах степень гидрата- [c.121]

    Как ВИДНО из данных, приведенных в табл. 7.3, один и тот же сорбент МОЖНО применять в процессах разделения, протекающих по разным механизмам. Так, широко используемый адсорбент А12О3 может также обладать свойствами ионита в том случае, если подвижная фаза содержит воду, что вызывает образование ОН-групп на поверхности А12О3. При разделении веществ, основанном на использовании их различной растворимости в двух несмешивающихся жидких фазах, в качестве стационарной фазы используют жидкость, заполняющую пористый носитель (например, целлюлоза — вода). Но в щелочной среде разделение веществ на целлюлозе (целлюлозу применяют, например, в виде бумаги) сопровождается процессами ионного обмена с гидроксильными и-карбоксильными группами самого носителя  [c.343]

    Реакция протекает вправо при избытке кислоты. Ионит в колонке отмывают водой от избытка кислоты, после чего ионит готов к применению. Пробу пропускают через колонку, колонку промывают водой или элюентом. Собирают элюат целиком или по фракциям. Перед каждым последующим применением необходимо проводить регенерацию ионита в колонке, так как в колонке содержатся различные ионы (например, Х , Хг). Происходящий при этом химический процесс аналогичен описанному уравнением (7.4.5). Процесс замены ионов Х+ ионами Хь Ха. .. называют регенерацией ионита, чтобы подчеркнуть, что ионит при этом возвращается в свое исходное состояние. Для сдвига равновесия вправо необходимо подобрать нужную концентрацию кислоты. Концентрированные растворы повышают скорость ионного обмена, но из-за высокой вязкости раствора снижается диффузия ионов. Поскольку процесс ионного обмена протекает сте-хиометрически, можно рассчитать полную обменную емкость колонки, зная количество ионита. Но рассчитанную обменную емкость не всегда можно полностью использовать (разд. 7.3.1.1). Пусть в колонке имеется ионит в Н -форме. Требуется провести ионный обмен с ионами К" . В месте подачи анализируемой пробы в колонку происходит полный обмен ионов Н+ на ионы При дальнейшем пропускании раствора, содержащего ионы К (фронтальная техника проведения ионного обмена), происходит смещение зоны, заполненной ионами К" , вниз. При этом колонку можно разделить на три слоя (рис. 7.17). В первом слое находится ионит только в К" -форме, во втором слое — ионит, содержащий оба иона, в третьем слое — ионит, содержащий ионы Н" . Распределение концентраций происходит по 8-образной кривой (ср. с формой полос элюентной хроматографии). При дальнейшем пропускании раствора КС происходит зарядка второго слоя ионами до проскока. Число ионов К" , которые могут быть количественно поглощены колонкой до проскока ионов, называют емкостью колонки до проскока. Эта емкость меньше величины полной емкости колонки, так как проскок К" -ионов наблюдается в тот момент, когда в колонке еще содержатся Н+-ионы. [c.378]

    Электрохимические реакции, протекающие на iлpalHИlцe раздела двух фаз, совершаются при наличии двойного электрического слоя из зарядов, находящихся в металле, и ионов другого знака в растворе. Подобные ионные двойные слои, возникающие на границе соприкосновения фаз, приводят к глубоким изменениям физико-химических свойств поверхностных слоев. Процесс ионного обмена протекает таким образом, что значение электродного потенциала отвечает термодинамическому равновесию между металлом и электролитом. [c.6]

    Таким образом, знак отдельного электрода (полуэлемента) зависит не только от того, каков заряд электрода (полуэле мента) в цепи с водородным электродом, но и от порядка записи электродной реакции. Однако во всех случаях процесс ионного обмена. протекает таким образом, что значение электродного потенциала отвечает термодинамическому рав1Новесию между электродом и раствором электролита. [c.148]

    При чисто гелевой кинетике скорость установления ионообменного равновесия прямо пропорциональна концентрации ионогенных групп, содержащих вытесняемые ионы, коэффициенту взаимодиффузии D в зерне ионита и обратно пропорциональна радиусу зерна г. В этом случае кинетика ионообмена зависит от структуры, набухаемости и зернения ионита, от радиусов гидратированных ионов и не зависит от концентрации раствора. Если скорость диффузии ионов в глубь зерна ионита и обратно одинакова, то процесс ионного обмена, происходящий в объеме частицы, подчиняется закону Фика  [c.178]


Библиография для Процесс ионного обмена: [c.35]   
Смотреть страницы где упоминается термин Процесс ионного обмена: [c.618]    [c.285]    [c.83]    [c.10]   
Основные процессы и аппараты химической технологии Издание 8 (1971) -- [ c.596 , c.597 , c.613 ]




ПОИСК





Смотрите так же термины и статьи:

Ионный обмен

Ионный обмен и иониты

Обмен ионов

Обменные процессы

Процесс ионный



© 2025 chem21.info Реклама на сайте