Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электрическое сплавов

    В атмосферных условиях и в воде допускается контакт между нержавеющей сталью и алюминием, и он не представляет опасности. В растворах хлористого натрия, в пластовой и в морской воде контакт алюминия и его сплавов с нержавеющей сталью интенсифицирует скорость их коррозии. В морской воде контактная коррозия проявляется особенно сильно, когда большая поверхность нержавеющей стали контактирует с малой поверхностью алюминиевого сплава. Особенно опасен контакт с медными сплавами, даже при отсутствии электрического контакта. Существенную роль при этом играет вторично осаждающаяся медь, образующая эффективные местные катоды. Если алюминий анодирован или окрашен, то это значительно снижает опасность контактной коррозии. [c.59]


    Правило фаз было выведено Гиббсом в 1876 г. Приведенная выше формулировка его в настояш,ее время может быть заменена более расширенной. Двойка в соотношении (VIH, 2) является результатом принятого нами допущения, что из внешних факторов только два — температура и давление — могут влиять на состояние равновесия в Системе. Однако возможны системы, в которых на равновесие могут оказывать влияние и другие внешние факторы (электрические и магнитные поля, поле тяготения). В этих случаях в соотношение (VIH, 2) вместо двойки войдет соответственно иное число внешних факторов. С другой стороны, в некоторых системах изменения давления или (реже) изменения температуры практически не влияют на равновесие. Так, незначительные изменения давления (например, колебания атмосферного давления) не оказывают ощутимого влияния на свойства металлических сплавов. E таких случаях число степеней свободы соответственно уменьшается на единицу и определяется как условная вариантность системы Су л- [c.247]

    У некоторых металлов, их сплавов и соединений при температурах, близких к абсолютному нулю, наблюдается сверхпроводимость (1)-" ) В проводниках второго рода, например электролитах, электрический ток обусловлен перемещением ионов и плотность тока равна [c.35]

    Сурьма с оловом образует антифрикционные сплавы — баббиты, которыми заливают подшипники скольжения. Система сплавов сурьма — олово эвтектическая, и кристаллы твердой сурьмы, вкрапленные в электрический сплав, создают точки опоры для шеек валов, опирающихся на подшипники. Мягкая эвтектика вытесняется и в образующихся микрозазорах хорошо удерживается смазка. В подшипниковые сплавы добавляется свинец, а иногда и активные металлы. [c.424]

    Действие термоэлектрических пирометров основано на свойстве сплава двух разнородных металлов при нагревании спая давать электрический ток, напряжение которого пропорционально температуре спая. [c.195]

    Для металлургии хром получают в виде сплава с железом феррохром, содержащий до 60% Сг) восстановлением хромистого железняка углем в электрической печи  [c.550]

    Рений и его сплавы с вольфрамом и молибденом применяются в производстве электрических ламп и электровакуумных приборов они имеют больший срок службы и являются более прочными, чем вольфрам. Из сплавов вольфрама с рением изготовляют термопары, которые можно использовать в интервале температур от О до 2500 °С. Жаропрочные и тугоплавкие сплавы рения с вольфрамом, молибденом, танталом применяются для изготовления некоторых ответственных деталей. Рений и ei o соединения служат катализаторами прн окнслении аммиака, окислении метана, гидрировании этилена. [c.666]


    Медь н ее сплавы 0 П 6-9 Серебро 6 Палладий до 1 Детали точных приборов, требующих постоянства электрических параметров для защиты серебряных контактов от потускнения [c.921]

    А1), и в особенности, когда температура охлаждающей воды выше нормальной. Во всех случаях применения медных сплавов необходимо избегать появления гальванических пар. Например, когда канал из углеродистой стали контактирует с латунной трубной доской в морской воде, на углеродистую сталь следует нанести покрытие из аустенитной хромоникелевой стали по всей площади контакта или каким-либо образом осуществить электрическую изоляцию (рис. 2). [c.316]

    Приготовление катализаторов. Так как существует определенная связь между активностью и поверхностью катализатора, способ его приготовления сильно влияет на его активность. Для получения высокой степени дисперсности недостаточно ограничиться механическим дроблением и распылением катализатора необходимо использовать химические или физические методы прокаливание, осаждение, выделение из сплавов или через коллоиды (в электрической дуге, коллоидной мельнице). [c.242]

    Возможны такие системы, которые нельзя использовать как химические источники тока, но в которых электрический ток возникает за счет электрохимических реакций с тем же механизмом, что и в обычных элементах. Таковы, напрнмер, микроэлементы, возникающие на поверхности металлов и сплавов при коррозии их в электролитах. [c.518]

    Золото в основном служит для обеспечения бумажных денег, находящихся в обращении. Еке финансовые международные расчеты проводятся на основе золотой расчетной единицы. Кроме того, золото используют в зубоврачебной практике, для изготовления ювелирных изделий и для покрытия специальных электрических контактов. На практике применяют обладающие значительной твердостью сплавы золота с серебром или медью, представляющие собой твердые растворы. [c.329]

    Литье цинка, свинца, олова. Масштабы литья изделий из этих металлов обычно незначительны. Из сплавов олова, свинца и сурьмы отливают полиграфические шрифты, из цинковых сплавов — детали автомобильных двигателей (корпуса карбюраторов, насосов, фильтров). Для литья в основном используют плавильные тигли с электрическим или косвенным газовым обогревом. Иногда в городах, находящихся в зоне действия магистрального газопровода, вместо электрического обогрева или обогрева жидким топливом используют обогрев газовым топливом, которое позволяет более точно управлять температурным режимом и облегчать операции пуска и выключения печи. [c.316]

    Металл, входящий в состав нержавеющей стали. В сплаве с никелем дает нихромовую проволоку, применяемую в тостерах и других устройствах, где необхсдимо высокое электрическое сопротивление (для выделения тепла). [c.164]

    При употреблении нихромовой проволоки, температуры 1100— 1200 °С —при употреблении некоторых специальных сплавов. Кроме металлических проволок в электрических печах применяют так называемые силитовые стержни в печах с силитовыми стержнями можно достичь температуры 1350—1400 " С. [c.152]

    Чистый алюминий используется как ценный электротехнический материал, прежде всего для изготовления проводов — проводник из алюмииия обладает в два раза большей электрической проводимостью, чем проводник из меди равной массы из алюминия изготовляют обмотки роторов быстроходных электромашин. Высокая пластичность чистого алюминия дает возможность изготовлять из него оболочки кабелей и тонкую фольгу, используемую для изготовления электрических конденсаторов и других электротехнических деталей. В связи с очень слабой парамагнитностью алюминий и его сплавы находят применение в радиотехнике. [c.259]

    С агрессивными химическими средами. Она является экономически оправданной в тех случаях, когда коррозионная среда обладает достаточной электропроводностью и потери напряжения (связанные с протеканием защитного тока), а следовательно, и расход электроэнергии г равнительно невелики. К Чтодная поляризация защищаемого металла достигается либо наложением тока от внешнего источника кaтoднaя защита), либо созданием макрогальванической пары с менее благородным металлом (обычно применяются алюминий, магний, цинк и их сплавы) Он играет здесь роль анода и растворяется со скоростью, достаточной для создания в системе электрического тока необходимой силы (протекторная защита). Растворимый анод при протекторной защите часто называют жертвенным анодом . [c.504]

    В результате опытов, проведенных Гудковым (ВНИИкимаш) по изучению горения металлов в кислороде, было установлено, что проволоки, изготовленные из технических сплавов— углеродистой стали (0,13% С), оцинкованного железа, стали ЭЯ1Т и нихрома НХ20, при нагревании ИХ электрическим током в среде неподвижного кислорода горят с пиротехническим эффектом. Наибольший эффект наблюдали при горении сплава нихром и хромоникелевой аустенитной стали ЭЯ1Т. Горение проволоки из этих сплавов в воздухе идет спокойно. [c.83]


    Основная масса выплавляемого никеля (около 80%) используется для получения никелевых сплавов и легированных сталей (нержавеющих, бронебойных, жаростойких и др.). Из никеля изготавливают специальную аппаратуру химических производств. Он применяется также для декоративно-защитных покрытий на других л еталлах. Палладий и платина используются для изготовления коррозионностойкой лабораторной посуды, аппаратов и приборов хи-л ических производств, для термометров сопротивления и термопар, i также электрических контактов. Из платины изготавливают нерастворимые аноды, например, для электрического производства Iадсерной кислоты и перборатов. Палладий и платина применяются Е ювелирном деле. [c.608]

    Марганец применяется главным образом в производстве легированных сталей. Марганцовистая сталь, содержащая до 15% Мп, обладает высокими твердостью и прочностью. Из нее изготовляют рабочие части дробильных машин, щаровых мельниц, железнодорожные рельсы. Кроме того, марганец входит в состав ряда сплавов на основе магния он повыщает их стойкость против коррозии. Сплав меди с марганцем и никелем — манганин (см. 200) обладает низким температурным коэффициентом электрического сопротивления. В небольших количествах марганец вводится во многие сплавы алюминия. [c.663]

    Свинец используется для изготовления оболочек электрических кабелей, как кислотоупорное покрытие для химических апп аратов, для защиты от ионизирующих излучений, в типографском сплаве (РЬ с добавкой Sn и Sb), в свинцовых аккумуляторах. Многие соедннения свинца являются пигментамц (наполнителями масляной краски) ярко-красный сурик РЬзО , хромовый желтый РЬСг04 и др. Оксид РЬО входит в состав оптического стекла и хрусталя. Тетраэтилсвинец РЬ(С2Н5)4 — антидетонатор, повышающий октановое число бензина. [c.387]

    Послсдовательноеть выполнения работы. Измерение температурт при работе с солевыми пли металлическими сплавами производится обычно ири помощи термопары, присоединенной к гальванометру или включенной в компенсационную схему. Исследуемую смесь солей или металлов поместить в фарфоровый тигель. Тигель поставить в электрическую печь, включить ее и расплавить смесь, стараясь не перегревать ее выше температуры плавления. Перемешать сплав, вык-лючтгть печь и опустить в сплав горячий спай термопары. Закрепить термопару в штативе. Конец термопары должен находиться в расплаве, почти у дна тигля, и не касаться стенок тигля. [c.237]

    Процесс сварки труб из центробежнолитых трубных заготовок отличается рядом особенностей вследствие специфических свойств аустенитных хромоникелевых сталей. Аустенитная сталь типа НК-40 характеризуется электрическим сопротивлением, примерно в 5 раз большим, чем обычных углеродистых сталей, и низкой теплопроводностью металла, что определяет выбор методов и режимов сварки. Химический состав хромоиикелевых сталей также оказывает влияние на происходящие металлургические процессы сварки. Высокое содержание хрома в сплаве делает его взаимодействие с кислородом и рядом оксидов (МпО п 5102) достаточно активным, что вызывает интенсивные марган-цево-кремневосстановительные процессы, сопровождающиеся окислением значительных количеств хрома. Другие элементы, входящие в жаропрочный сплав (Ре, N1, Мп, 51, 5, Р, N и др.), при сварке могут образовывать различные эвтектики, карбиды, нитриды, интерметаллиды. Образование в металле новых фаз вызывает появление структурных напряжений, особенно металлов центробежнолитых трубных заготовок с характерной анизотропной дендритной структурой. Наконец, при сварке в результате воздействия высоких температур происходит укрупнение зерен в структуре металла и его разупрочнение при комнатной температуре, что ухудшает эксплуатационные свойства труб. [c.33]

    Аргонодуговая сварка основана на использовании теплоты электрической дуги, возникающей в среде аргона между непла-вящимся вольфрамовым электродом и деталью. Присадочным материалом служат алюминиевая проволока или стержни из алюминиевых сплавов. Перед сваркой проводится разделка кромок трещины засверливание трещины по концам не требуется. [c.85]

    В. тапной главе рассматриваются вопросы химической коррозии металлов. Процесс разрушения металлов и сплавов вследствие взапмоде11ствия их с внешней средой, не сопровождающийся возникновением электрических токов, называют химическо коррозией. Характерной особенностью процесса химической коррозии является, в отличие от электрохимической коррозии, образование продуктов коррозшт непосредственно в месте взаимодействия металла с агрессивной средой. Химическая коррозия подчиняется основным законам химической кинетики гетерогенных реакций и наблюдается ири действии на металл сухих газов или жидких неэлектролитов. [c.131]

    Импульсное нафужение создают через мембрану электрическим разрядом в жидкость. Оно приводит к равномерному плотному прилеганию биметалла к днищу поршня. Последующее контактирование с нагретой поверхностью и приложение удельного давления вызывают протекание диффузионных процессов, обеспечивающих прочность соединения материалов на офыв не менее прочности алюминия. Из-за кратковременности и локальности нагрева происходит потеря механических свойств алюминиевого сплава на глубину не более 3 мм от поверхности днища поршня. [c.166]

    При эрозионной защите днища поршня из а чюминиевого сплава АК-4 поверхность зачищают и обезжиривают титановой составляющей биметалла, поверхность алюминиевой составляющей травят. Поверхность днища поршня обрабатывают (торцуют) на токарном станке. На подставке I размещают поршень 2 и биметалл титан-алюминий 3 (алюминий со стороны днища поршня). Мембрана 4 сосуда 5 с жидкостью плотно контактирует с поверхностью титановой составляюихей биметалла. Электродом 6 создают электрический разряд, обеспечивающий максимальное удельное давление 9 Па на мембране. Алюминиевая составляющая биметалла деформируется, и соединение биметалла с материа-1ом поршня получается недостаточно прочным, что не обеспечивает плотного прилегания материа юв,. предохраняющего соединяемые поверхности от окисления при проведении второй стадии процесса на воздухе. Далее поршень с биметаллом спиральным нагревателем 7 помещают на нагое-тую до 550 °С поверхность 8, прикладывают усилие сжатия с удельным давлением 5 Па. При достижении в зоне контакта алюминия с алюминиевым сплавом температуры 550 °С делают [c.166]

    Теории электрохимической коррозии н пасснвиостн металлов лежат в основе методов их защиты от коррозии. К числу их относятся методы, направленные на снижение тока коррозии за счет повышения поляризации коррозионных процессов. Например, повышение водородного перенапряжения введением в коррозионную среду специальных веществ — ингибиторов — резко снижает растворение металла при коррозии с водородной деполяризацией. Предварительное удаление кислорода из агрессивной среды способствует снижению коррозионного тока. Широкое распространение получило нанесение защитных покрытий па поверхность металла металлических, лакокрасочных, полимерных, пленок из труднорастворимых соединений металлов (оксиды, фосфаты) и т. п. Высокой коррозионной устойчивостью обладают металлические сплавы (например, нержавеющие стали), поверхность которых находится в пассивном состоянии. Существуют электрические методы защиты металлов от коррозии, связанные с применением поляризующего тока. Металлу задается потенциал, при котором процесс его растворения исключается или ослабляется. Например, защищаемый металл поляризуется катодно, а анодом служит дополнительный кусок металла. Электрические методы применяются при защите крупных стационарных сооружений. [c.520]

    Супхествуют, наконец, другие потенциальное возможности использования кокса в более или менее отдаленном будущем. Наиболее важным, несомненно, является электротермическое восстановление глинозема. Этот процесс явился предметом значительных исследований и в 1967 г. представляется неизбежным развитие этого направления. Получение чистого кремния, свободного от железа, например для сплава с алюминием, в настоящее время производится в электрических печах в присутствии древесного угля. Можно для этой цели было бы использовать кокс, полученный из мытых углей с зольностью около 2%, если бы его умели получать за приемлемую стоимость. [c.220]

    Вредное влияние меди, железа, никеля сказывается также, если они находятся в виде ионов в водном растворе, вследствие их катодного осаждения на алюминии. Поэтому в замкнутых полиметаллических системах, в которых циркулируют водные растворы, наблюдается усиление скорости коррозии алюминия и его сплавов, даже если они не находятся в электрическом контакте с элементами из меди. При определенных условиях они склонны к специфическим видам коррозионного разрушения — питтингу, межкристаллитной коррозии, растрескиванию, расслаиванию. Склонность алюминиевого сплава к питтипгообразованию определяется разностью между потенциалом активирования п.т и стационарным потенциалом E . Чем больше эта разность, тем больше стойкость сплава к питтингообразованию и меньше вероятность, что незначительные изменения условий эксплуатации (анодная поляризация сплава за счет неодинакового распределения кислорода, попадание окислителя и др.) выведут сплав из пассивного состояния. [c.55]

    Как уже указывалось, титан способен взаимодействовать с углеродом лишь при высоких температурах. В системе титан — углерод при этих условиях образуются очень твердые сплавы, содержащие карбид титана Т1С — кристаллическое металлоподобное вещество с температурой плавления 3140°С, и ряд твердых растворов. Карбид титана проводит электрический ток, легко сплавляется с металлами и другими карбидами, образуя при этом иногда чрезвычайно твердые тугоплавкие сплавы. При обычной температуре карбид титана довольно инертен, при высоких же температурах ведет себя подобно элементарному титану — реагирует с галогенами, кислородом, серой, азотом, а таклсе с кислотами и солями — окислителями с образованием продуктов, аналогичных получающимся при действии на элементарный титан. Подобные карбиду соединения титан образует с фосфором (фосфиды), кремнием (силиды), бором (бориды). [c.270]

    Особые требования к железу и его сплавам иредт являет )лектротехниче1 кая промышленност ,, для которой производятся магнитные стали и сплавы (трансформаторное железо), а также немапштные ета.пи и чугуны, стали и сплавы с большим электрическим сопротивлением и сплавы с особенностями теплового расширения. [c.310]

    Использование меди в технике. Меп,ь и сплавы на ее основе находят обширное применение в различных отраслях техники. Чистая медь (99,9% Си) в больших количествах используется в электротехнической промышленности для изготовления электрических проводов, контактов и других деталей, а также в теплообменных аппаратах. Благодаря высокой пластичности медь используется для изготовления холоднотянутых проволок, у которых в результате анизотропии электрическая проводимость вдоль оси зиачи-гельно больше, чем поперек оси, что нашло применение в радио-электрони1се. [c.324]

    Измерение температуры термоэлектрическими приборами основано на свойстве сплава двух разнородных металлов давать нри нагревании электрическое напряжение (термоэлектричество). Возьмем две проволочки из разных металлов или из различных сплавов, спаяем одни концы этих проволочек вместе, а другие, свободные, соединим с гальванометром — прибором, измеряющим малые напряжения электрического тока (рис. 69). Есл теперь нагреть место спая, то стрелка гальвано- 69. Схема термоэлектри метра отклонится, что указывает на ческого пирометра, возникновение электрического тока различные металлы термопары  [c.121]

    Литье меди и ее сплавов. При выплавке медных и особенно медно-цинковых сплавов вместо печей, отапливаемых нефтяным топливом, применяют электрические печи. Чистое газовое топливо используют весьма редко. Основные причины, ограничивающие применение газового топлива, — возможность потенциальных потерь металла в виде окиси цинка при выплавке в отапливаемых открытым пламенем печах и опасение загрязнения чистых металлов сульфидами или какими-либо окислами, особенно ряда сплавов, нуждающихся в тщательном рафинировании. Однако имеются примеры успешного использования газового топлива. В ФРГ применяют небольшие закрытого типа тигли, обогреваемые снаружи СНГ. Газовые печи оригинальной конструкции имеются в США. Печь, разработанная фирмой Асарко (рис. 66), загружается сверху медными катодами. Воздух и газ вдуваются внутрь печи по ее окружности вблизи донной части через горелки предварительного смешения. При этом для обеспечения необходимо качества металла следует выдерживать соотношение газ— воздух. Например, избыток воздуха не должен превышать 0,5%, содержание серы в СНГ — 0,001%. В атмосфере печи содержание водорода должно быть не более 1 %. Соблюдение этих условий гарантирует достижение требуемого качества переплавляемой меди. [c.314]


Смотреть страницы где упоминается термин Электрическое сплавов: [c.439]    [c.530]    [c.135]    [c.452]    [c.694]    [c.90]    [c.512]    [c.190]    [c.276]    [c.281]    [c.252]    [c.267]    [c.328]    [c.66]    [c.191]   
Справочник по разделению газовых смесей (1953) -- [ c.322 ]




ПОИСК





Смотрите так же термины и статьи:

Алексеева, В. А. Кузнецов. Исследование емкости двойного электрического слоя на жидких сплавах галлий — сурьма

Изменение электрических параметров в процессе анодирования алюминиевых сплавов в серной кислоте

Сопротивление электрическое металлов сплавов

Сплавы для электрических измерительных и нагревательных приборов

Сплавы для электрических нагревателей

Сплавы электрическое сопротивление

Удельное электрическое сопротивление сплавов



© 2024 chem21.info Реклама на сайте