Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химические реакции, исследование обратимости

    Здесь ДЯ и AS — изменения энтальпии и энтропии, которые, согласно (52.2), соответствуют уравнению химической реакции. Таким образом измерением электродвижущей силы и ее температурной зависимости можно определить величины ДС, ДЯ и Д5 для реакции (52.2). Так как все три величины являются функциями состояния, то их значения ие зависят от того, протекает ли реакция (при постоянной температуре и постоянном давлении) необратимо (случай б".) или обратимо (случай в".). Напротив, теплота, принятая системой (которая зависит от пути в пространстве состояния), при необратимом протекании равна ДЯ, при обратимом процессе равна ГД5, в то время как в последнем случае, согласно (52.31), ДЯ равна сумме подведенной теплоты и электрической работы, подведенной потенциометром к системе. Термодинамическое исследование гетерогенной реакции с помощью обратимых гальванических элементов играет также важную роль при экспериментальной проверке теплового закона Нернста ( 38). [c.270]


    От степени протекания обратимых реакций (5.2) и (5.3) зависит уровень, на котором проходит радикально-цепной процесс в целом, и возможные соотношения выходов продуктов. Пределы превращения радикалов в реакциях рекомбинации и диспропорционирования можно определить на основе термодинамического исследования этих реакций. Существуют различные методы оценки констант равновесия химических реакций. Если константы скорости прямой и обратной стадий реакции оцениваются теоретически согласно (2.5), то очевидно, что результат расчета константы равновесия кинетическими методами и статистическая оценка ее должны совпадать. [c.112]

    Из изложенного следует, что выбор компонентов, вообще говоря, произволен и неоднозначен. На вопрос, из каких компонентов состоит система, в которой протекают обратимые химические реакции, невозможно дать однозначный ответ. Число же компонентов имеет совершенно определенное значение. Однако подчеркнем, что ответ на вопрос о числе компонентов зависит от точности экспериментального исследования, которая в отдельных случаях либо позволяет не учитывать, либо требует учитывать концентрации веществ, присутствующих в очень незначительных количествах. [c.194]

    ИССЛЕДОВАНИЕ ВОЗМОЖНОСТИ И НАПРАВЛЕНИЯ ОБРАТИМЫХ ХИМИЧЕСКИХ РЕАКЦИЙ [c.159]

    Исследование возможности и направления обратимых химических реакций [c.166]

    Гейровский [9, 27, 56, 57], основываясь на результатах собственных опытов и работ своих сотрудников [26, 28], высказал предположение, что поверхностноактивные вещества влияют только на протекающие у поверхности электрода химические реакции, предшествующие процессу приема электронов, или на реакции, происходящие после него. К этому выводу Гейровский пришел на основании наблюдений, что ни одно из исследованных им поверхностноактивных веществ не влияло на обратимые процессы, протекающие с участием одного электрона (например, + е- ->Т1), электродные же процессы многовалентных катионов (например, Сс[ +- - 2еС(1 и т. п.) сильно тормозились этими поверхностноактивными веществами. Сильное влияние адсорбционной пленки при разряде многовалентных катионов Гейровский объясняет тем, что переход первого электрона происходит очень быстро и не тормозится поверхностноактивным веществом. Возникающий катион более низкой валентности (например, - г е 2п+) реагирует с другим ионом, например по уравнению [c.276]

    Грань между обратимыми и необратимыми реакциями является, однако, относительной. По мере уточнения исследования химических реакций все большее число их переходит из разряда необратимых в обратимые. Что касается простейших реакций, если измерять простоту реакции небольшим числом атомов, связанных в молекулах исходных и образующихся веществ, то из теоретических соображений вытекает вывод -об их неизбежной обратимости. [c.87]


    Как видно из таблиц функции / М), которая определяется уравнением (9.19), значение функции существенно не меняется при изменении отношения к а. Как и в случае электродного процесса с последующей обратимой химической реакцией, увеличение отношения к а на три порядка приводит к увеличению максимального значения функции у а1) приблизительно на 10%, Поэтому изменения функции тока нельзя использовать для исследований кинетики химических реакций. [c.334]

    При исследовании кинетики экстракции иО2(Ы0з)г в ТБФ методом единичных всплывающих капель [92] квадратичная зависимость скорости экстракции от концентрации ТБФ ошибочно воспринята авторами как свидетельство медленной реакции второго порядка по данному компоненту. Такого рода ошибки являются довольно распространенными при исследовании гетерогенных обратимых реакций в диффузионной области. Отсюда следует важный вывод, что изучениям кинетики химических реакций при экстракции обязательно должен предшествовать этап установления действительного режима реагирования. [c.180]

    Обратимый переменнотоковый электродный процесс на основной частоте типа к+пе Ъ характеризуется и некоторыми другими особенностями. Потенциал пика и форма волны не должны зависеть от концентрации и периода капания. Отсутствие зависимости Ер и формы волны от этих переменных само по себе не является однозначным признаком обратимости, но, как будет показано, форма волн некоторых квазиобратимых процессов и процессов, сопровождающихся явлениями адсорбции и химическими реакциями, часто существенно зависит от периода капания. Поэтому исследование влияния периода капания на форму и положение волны иногда может быть весьма полезным для подтверждения характера электродного процесса. [c.437]

    Наиболее обстоятельные исследования кинетики абсорбции СО 2 аммонизированным рассолом в широких пределах степени карбонизации системы были проведены A П. Белопольским [45]. Исходя из процесса абсорбции, сопровождаемого обратимой химической реакцией между СО 2 и NHg с образованием карбамата аммония, А. П. Белопольский дает следующее уравнение кинетики  [c.95]

    Полная обратимость изменений спектров ЗПР и ЯМР с -температурой указывает яа то, что состояние замороженных растворов, полученных при скоростях охлаждения 24-=-74 К/с, близко к термодинамически равновесному. Следовательно, объем Vm микрообластей с высокой подвижностью частиц будет определяться уравнением фазового состояния системы. С понижением температуры значение ж уменьшается во всех исследованных нами системах, т. е. дУж/дТ>0. Каждой температуре соответствует свое значение объема микрофазы Уж, в котором и будет происходить химическая реакция, если компоненты, образующие ее, способны к взаимодействию. При достаточно сильном понижении температуры реакции прекращаются из-за увеличения вязкости и уменьшения подвижности. Образование жидкой микрофазы в замороженных растворах термодинамически более выгодный процесс по сравнению с включением растворенных веществ в кристаллическую решетку твердого растворителя, поскольку затраты энергии, связанные с внедрением молекул в кристаллическую решетку, превышают увеличение свободной энергии, обусловленное повышением химических потенциалов при увеличении концентрации растворенных веществ в жидкой микрофазе. Происходящее при замораживании концентрирование веществ может привести к составу, отвечающему эвтектической смеси. Данные о составе жидкой микрофазы, полученные методом ЯМР, показывают, что растворенные вещества составляют 20—30% от общего объема жидкой микрофазы при температурах на 10—15 градусов ниже точки замерзания раствора. [c.189]

    К необратимым электродным процессам, следует подчеркнуть, что область применимости этого метода значительно шире. Наряду с применением этого метода к изучению быстрых химических реакций, о чем кратко упоминалось выше, этот метод очень удобен для исследования почти обратимых систем в более широкой области потенциалов. Он является также весьма чувствительным методом для изучения адсорбции как неорганических, так и органических деполяризаторов. [c.115]

    Исследование условий фазового и химического ргвновесия. Знание условий фазового и химического равновесия позволяет не только принципиально решить вопрос о возможности разделения смеси методами ректификации, экстракции и т. д. или определить степень превращения в случае обратимых химических реакций, но и найти оптимальную схему разделения или условия проведения реакции. Данные по равновесию частично имеются в литературе, однако в большинстве случаев их необходимо либо измерять непосредственно, либо рассчитывать. Непосредственное измерение обычно связано с большими затратами времени и средств. Поэтому чаще всего приходится прибегать к расчетным методам получения равновесных данных на основе минимального объема экспериментальных параметров. Поскольку точность данных определяет качественные и количественные характеристики результатов расчета, необходимы точные базисные данные, равно как и надежные методы расчета. [c.98]


    Необходимо отметить, что существование подобных соотношений означает, что E l характеризует простую окислнтельно-восстановнтельцуго систему (реакции в которой протекают быстро и обратимо) и что это выполняется в ряду соединений, у которых не изменяются энергии сольватации АДОр. Эти ограничения очень жестки, однако число опубликованных вполне удовлетворительных соотношений удивительно велико. Например, крайне редко можно найти ароматический углеводород, который окисляется в одноэлектронной стадии до катион-радикала, совершенно стабильного в исследованных органических средах. Гораздо чаш е встречаются системы, полностью необратимые из-за протекания ряда химических реакций, следуюш их за стадией переноса электрона. Выполнение соотношений между Еч н энергией орбитали должно быть обусловлено тем, что природа последующих реакций в каждом ряду изученных соединений одинакова, а также компенсацией ошибок. [c.81]

    Б большинстве исследований, связанных с изучением изменения окислительно-восстановительного потенциала данной системы как функЕщи срсды, на самом деле рассматривается изменение потенциала полуволны для быстрых одноэлектронных обратимых систем. Для того чтобы результаты были правильными, необходимо удостовериться, что полученная /. Г-крнвая действительно соответствует процессу переноса электрона, неосложненного, в частности, сопряженными химическими реакциями. В этих условиях потенциал полуволны, например, для окисления соединения А до частицы А+, описывается выражением (2.103). [c.84]

    Ферменты являются белками, поэтому любые агенты, вызывающие денатурацию белка (кислоты, щелочи, соли тяжелых металлов, нагревание), приводят к необратимой инактивации фермента. Однако подобное инак-тивирование относительно неспецифично, оно не связано с механизмом действия ферментов. Гораздо большую группу составляют так называемые специфические ингибиторы, которые оказывают свое действие на какой-либо один фермент или группу родственных ферментов, вызывая обратимое или необратимое ингибирование. Исследование этих ингибиторов имеет важное значение. Во-первых, ингибиторы могут дать ценную информацию о химической природе активного центра фермента, а также о составе его функциональных групп и природе химических связей, обеспечивающих образование фермент-субстратного комплекса. Известны вещества, включая лекарственные препараты, специфически связывающие ту или иную функциональную группу в молекуле фермента, выключая ее из химической реакции. Так, йодацетат I H,—СООН, его амид и этиловый эфир, пара-хлормеркурибензоат lHg—С Н,—СООН и другие реагенты сравнительно легко вступают в химическую связь с некоторыми SH-группами ферментов. Если такие группы имеют существенное значение для акта катализа, то добавление подобных ингибиторов приводит к полной потере активности фермента  [c.147]

    Я. Вант-Гофф первым понял и сформулировал то, что среди многообразия химических реакций обратимых, последовательных, параллельных, реакций с дробными, отрицательными и меняюшимися по ходу реакции порядками — есть нормальные химические превращения. Такие нормальные преврашения, утверждал Вант-Гофф, имеют строго целочисленный порядок, который может быть только 1, 2 или 3 (moho-, би- и тримолекулярные реакции). Все реакции, которые не имеют целочисленного порядка, Вант-Гофф отнес к сложным реакциям, складываюшимся из нескольких нормальных. Выдающиеся исследования Вант-Гоффа по кинетике химических реакций, теории растворов и стереохимии получили высокую оценку — Якоб Хендрик Вант-Гофф в 1901 г. был удостоен первой Нобелевской премии по химии. [c.15]

    Ускоряющее влияние реакций связывания переносимого компонента в извлекающей фазе на кинетику его массопередачи вначале было доказано исследованиями в области хемосорбции труднорастворимых газов [2—4]. Разработанные при этом теории в дальнейшем без существенных изменений были перенесены на процессы экстракции с химическими реакциями [6, 117, 118, 152, 153]. В частности. Шарма [118], используя теорию хемосорбции Данквертса [156 — 158], обсудил влияние необратимой реакции второго порядка в извлекающей фазе на скорость массопередачи вещества при экстракции. Еще раньше Раал и Джонсон [152] вывели уравнение скоростп экстракции при наличии обратимой реакции димеризации экстрагируемого вещества в органической фазе, а Оландер учел обратимые реакции сольватации [151 ] и димеризации [153]. [c.381]

    Можно предположить, что все упомянутые выше процессы включают обратимые химические реакции, которые достигают равновесия, т. е. такого состояния, при котором уже нет видимого течения реакции. При заданных условиях химическое равновесие характеризуется постоянным отнашение М активностей продуктов реакции и исходных реагирующих веществ это отношение называется термодинамической константой равновесия реакции. Существует соответствующая ей концентрационная константа. Если эта величина известна, то можно рассчитать состав данной реакционной смеси. В дополнение к термодинамике часто необходимо также изучать кинетику реакции, включая механизм процесса и скорости всех реакций, протекающих в системе. Таким образом, исследование кинетики может дать информацию, необходимую для [c.122]

    По-видимому, исторически сложилось так, что применение величины /во для характеристики необратимых ингибиторов было некритически заимствовано из опыта исследования обратимых ингибиторов. Возможно, что при этом важную роль играла недостаточная изученность механизма действия необратимых ингибиторов и стремление провести аналогию с действием обратимых ингибиторов. Позднее накопился большой экспериментальный материал по характеристике необратимых ингибиторов с использованием /во в качестве меры их антиферментной активности. Любопытно, что в некоторых случаях эта мера позволяла проводить сопоставление между химическим строением и антиферментным действием в рядах родственных по строению ингибиторов. По-видимому, это объясняется тем, что в подобных случаях время взаимодействия ингибитора с ферментом в среднем у разных авторов не слишком различалось и реакция не доходила до конца. Однако при более тщательном исследовании возникли, как и следовало ожидать, явные противоречия, объясняющиеся неадэкватностью параметра /во для необратимых ингибиторов. [c.114]

    В общем случае под действием сил сродства ,— считал Бертолле,— протекают обратимые реакции, ограниченные пределом. Предполагая, что скорость реакции пропорциональна силе сродства, Бертолле провел первую научно обоснованную качественную аналогию между физическим (закон охлаждения) и химическим (скорость реакции) процессами. Представления Бертолле явились основой для развития главного направления химической кинетики в XIX в. аналогия с физическими процессами, изучение динамики превращений на основании анализа их статики, исследование влияния условий на протекание реакции. Разумеется, и изучение механизмов химических реакций оказало некоторое влияние па развитие химической кинетики XIX в. В конце XVIII в. было выдвинуто представление (В. Хиггинс, Фульгем), что химическая реакция протекает через промежуточные стадии. В начале XIX в. эта мысль получила подтверждение при изучении ряда каталитических реакций (Д. Клеман и Ш. Дезорм, Г. Дэви, И. Деберейнер, Я. Берцелиус), а с 1830 г. начали изучать механизмы сложных реакций, характеризующихся начальным ускорением (Ш. де ла Рив, Миллон, X. Шёнбайн, Ф. Кесслер) [345, стр. 30—31]. Причем к исследованию механизма органических превращений химики приступили только с 1834 г. (Ю. Либих), когда были созданы первые теории строения органических соединений. [c.143]

    Продолжением этих обширных исследований явилось изучение электрохимического поведения 130 металлоорганических соединений переходных элементов [80, 81]. В этом случае был принят [80] следующий подход Нормальное исследование любого соединения включало 1) полярографическое изучение 2) исследования с помощью метода многократных треугольных импульсов (т. е. циклическая вольтамперометрня) для установления химической или электрохимической обратимости системы 3) исчерпывающий электролиз при соответствующем контролируемом потенциале и определение числа электронов (п), участвующих в реакции, которая соответствует полярографической волне 4) полярографическое изучение конечного раствора 5) исследования (когда это было целесообразно) конечного раствора с помощью метода ЭПР 6) пробное окисление (или восстановление) электрохимически генерированных веществ до исходного соединения и 7) полярографическое и спектроскопическое исследования этого конечного раствора в сопоставлении с исходным раствором . Некоторые из этих металлоорганических систем были электрохимически обратимыми, и данные для этих веществ, не приведенные в более ранних таблицах, собраны в табл. 14. Восстановленные формы не обязательно устойчивы в растворе в течение длительного времени. Другие соединения восстанавливались необратимо, но в определенных слу< чаях восстановленные формы, полученные электролизом при контролируемом потенциале, можно было окислить при постоянном потенциале до исходного материала с изменяющимся процентом регенерации. Все детали этих процессов можно найти в оригинальных статьях. Типы реакций металлоорганических соединений при их электрохимическом восстановлении показаны на рис. 3 [80]. [c.191]

    Дан обзор главным образом последних исследований по механизму реакций окисления и восстановления органических соединений различных классов. Рассмотрены случаи обратимых и необратимых электродных реакций с последующими химическими стадиями и чередоваггая электродных и химических реакций (ЕСЕ--механпзм), а также методы из1 чения этих реакций. Иллюстраций 5. Библ. 161 назв. [c.291]

    В дальнейшем появились работы по применению хро-новольтамперометрического метода для исследования механизмов электродных процессов. Метод оказался особенно пригодным для изучения механизмов окисления и восстановления различных органических веществ [28— 32]. В этом случае в отличие от полярографии образовавшееся путем катодного восстановления вещество остается вблизи электрода, и при обращении направления поляризации продукты восстановления могут быть окислены. По величине регистрируемых токов окисления и по потенциалам, при которых они наблюдаются, можно оценить обратимость или необратимость исследуемой системы, а также судить о протекании химических реакций, сопутствующих электродному процессу. [c.50]

    Рассмотренные в этой главе зависимости трудно использовать для определения кинетических параметров химических реакций, так как в эти уравнения входит обратимый потенциал полуволны, который не всегда известен. Однако, как показали Кемуля и Галюс [24], эти уравнения можно с успехом применять для исследования кинетики образования интерметаллических соединений в ртути. Эти авторы исследовали хронопотенциометрическим методом кинетику образования соединения AuZn в ртути. Хронопотенциометрический процесс восстановления ионов цинка проводили на висящем электроде из чистой ртути. Таким образом определяли Еу . В другой серии опытов восстанавливали цинк(П) на амальгаме золота. Выделяющиеся атомы цинка реагировали с амальгамой золота, образуя AuZn. В связи с этим измеренный потенциал /4 оказался на несколько десятков милливольт положительнее Еу . В этом случае определение константы скорости химического процесса не представляло больших трудностей. [c.341]

    ДЛЯ обратимого электродного процесса с последующей химической реакцией первого порядка, но в том случае угловой коэффициент равен 2,3 RTl2nF. Разность значений обоих угловых коэффициентов невелика (особенно для многоэлектронного электродного процесса) и может оказаться недостаточной, чтобы различить, протекает ли после переноса заряда химическая реакция первого порядка или реакция димеризации. Полезным при таком сомнении оказывается исследование зависимости кинетического потенциала полуволны от концентрации формы Ох. Такая зависимость имеет место только в случае димеризации. Десятикратное увеличение концентрации этой формы ведет при температуре 25 °С к смещению El/a В направлении положительных потенциалов на 20/п мВ. [c.384]

    Можно назвать еще следующие направления, по которым развивается современная ферментология изучение роли и действия отдельных факторов, влияющих на процесс,—температуры, pH среды, ее окислительно-восстановительного потенциала, концентрации субстрата и фермента изучение кинетики ферментативных реакций исследование специфичности ферментов — важнейшего свойства, определяющего их биологическую роль и возможности практического использования химического строения и действия ингибиторов ферментов, обратимого и необратимого, специфического и неспецифического торможения ими реакций изучение строения и функций различных кофакторов, в первую очередь специфических коферментов, их роли в каталитическом процессе, в обмене веществ исследование особенностей ферментных белков — состава, числа цепей, гидродинамических и электрохимических свойств, химической структуры далее — строения активных центров, их числа, их низкомолекулярных аналогов изучение механизма действия ферментов действия полифермент-ных систем и, наконец, образования ферментных белков, в том числе их биосинтез и образование из предшественников префер-ментов). [c.46]

    Большой вклад в изучение кинетических особенностей химических реакций в хроматографическом реакторе-колонке внесли исследования С. 3. Рогинского, М. И. Яновского и Г. А. Газиева с сотр. [62]. Ими было показано, что кинетические особенности реакций в хроматографических реакторах столь необычны, что необходимо рассматривать особый хроматографический режим реакций, существенно отличающийся от статического и динамического режимов. В хроматографическом режиме химическая реакция. протекает одновременно, и сопряженно с хроматографическим разделением реагентов и продуктов, что приводит к следующим особенностям процесса а) в результате хроматографического разделения в зоне реакции присутствует в основном исходный реагент б) возможно проведение обратимых реакций (нанример, типа А ч В + С) преимущественно в одном направлении, что позволяет получить выход нродзгкта, превьшхающий равновесные значения в статических условиях в) увеличивается селективность процесса, понижается температура проведения реакций, устраняются побочные реакции и т. д. г) упрощаются кинетические закономерности реакций д) открываются новые возможности изучецря начальных стадий работы катализатора. — Прим. ред. [c.29]

    Рад вопросов, связанных с химическим равновесием, рассмотрен в [5771—5796]. Доказательство единственности решения уравнения закона действия масс было дано Я. Б. Зельдовичем 5773]. Им же совместно с Д. И. Поля1рным 5774] разработана методика тепловых расчетов применительно к высоким температурам на основании значений термодинамических функций отдельных атомов, молекул и радикалов. В серии статей А. В. Воронова [5776—5784] обсуждено влияние обратимого превращения на характер зависимости свойств системы от обобщенных сил [5777, 5778], рассмотрено совместное решение некоторых уравнений высшей степени, возникающих при расчете химических равновесий [5779, 5780], выявлены особые точки обратимых химических реакций 5781—5783] и проанализирован ряд других вопросов. Влияние природы, размеров и симметрии молекул на равновесие рассмотрено в [5786, 5787], а влияние внешнего электрического поля — в [5792, 5793]. В [5797—5804] развит спектрофотометричеокий метод исследования равновесия реакций образования кисло-, родных и галоидных соединений металлов и измерены энергии диссоциации и энергии связи ряда молекул (см. также [6374—6376]). [c.54]

    Метод ЦВА с медленной разверткой убедительно показывает, что окисление незамещенных углеводородов, таких, как антрацен, представляет собой необратимый процесс. Из-за быстрых химических реакций, которые следуют за электрохимической стадией, в циклической вольтамперограмме нет катодного пика. С помощью метода, использующего быструю развертку, можно устранить влияние этих быстрых необратимых химических реакций. В 1967 г. три независимые группы исследователей представили недвусмысленные доказательства числа переносимых электронов. В исследованиях, проведенных Пеовером и Уайтом [54] в ацетонитриле, использовались в первую очередь количественные отношения метода ЦВА. При этом модельным соединением служил ДФА, поскольку даже при низких скоростях развертки потенциала, применяемых в обычной полярографии, ДФА претерпевает обратимое окисление до катион-радикала. Эти частицы имеют довольно значительное время жизни по сравнению со скоростью диффузии. Циклические вольтамперограммы были получены при различных скоростях сканирования потенциала. Электроокисление происходит путем переноса двух электронов на двух последовательных одноэлектронных стадиях, разделенных на 0,5 В. [Все отношения величин тока, потенциалы и т.д. относятся к первичному (первому) пику окисления (и/или восстановления), если не указано иначе.] До скорости развертки примерно 30 В/с потенциалы анодного и катодного пиков отличаются примерно на 60 мВ, что и следует ожидать в случае быстрого одноэлектронного переноса. Выше этого значения скорости развертки разделение пиков увеличивается, что указывает на отклонение от идеального поведения. При высоких скоростях сканирования неопределенность потенциалов, зависящая от падения напряжения становится более существенной. Тем не менее следует отметить, что стандартная константа скорости для переноса электрона, оцененная по вариации разделения пиков с изменением скорости сканирования, имеет порядок 1 см/с (получена по методу Николсона [55]). Функция тока анодного пика практи- [c.64]


Смотреть страницы где упоминается термин Химические реакции, исследование обратимости: [c.91]    [c.18]    [c.30]    [c.46]    [c.184]    [c.22]    [c.144]    [c.540]    [c.413]    [c.602]    [c.187]    [c.146]    [c.163]    [c.76]    [c.49]   
Использование радиоактивности при химических исследованиях (1954) -- [ c.47 ]




ПОИСК





Смотрите так же термины и статьи:

Исследование возможности и направления обратимых химических реакций

Обратимость реакций

Обратимость химическая

Реакции обратимые

Реакции химические, обратимые

Реакция исследование

Химические обратимые

Химические реакции, исследование обратимости меченые атомы при

Химические реакции, исследование обратимости реакции Химия горячих атомов



© 2024 chem21.info Реклама на сайте