Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеотидные идентичные

Рис. 5.24. Синтез генов с помощью ПЦР. Перекрывающиеся олигонуклеотиды (А и В) отжигают и достраивают образовавщийся дуплекс с заглубленными 3 -гидроксильными концами. Двухиепочечные молекулы денатурируют, добавляют в реакционную смесь вторую пару олигонуклеотидов (Си О), перекрывающихся с продуктами первого раунда ПЦР, и отжигают. Осуществляют второй раунд ПЦР, добавляют следующую пару олигонуклеотидов (Е и Р), осуществляют третий раунд ПЦР и т. д. В результате образуется двутсцепочечная ДНК, идентичная искомому гену. Одинаковыми буквами со щтрихом или без (А и А, В и В и т. д.) обозначены комплементарные участки ДНК. Нуклеотидная последовательность каждого олигонуклеотида соответствует таковой определенных сегментов ДНК. Рис. 5.24. <a href="/info/200509">Синтез генов</a> с помощью ПЦР. Перекрывающиеся олигонуклеотиды (А и В) отжигают и достраивают образовавщийся дуплекс с заглубленными 3 -<a href="/info/894348">гидроксильными концами</a>. Двухиепочечные молекулы денатурируют, добавляют в <a href="/info/26770">реакционную смесь</a> вторую пару олигонуклеотидов (Си О), перекрывающихся с продуктами первого раунда ПЦР, и отжигают. Осуществляют второй раунд ПЦР, добавляют следующую пару олигонуклеотидов (Е и Р), осуществляют третий раунд ПЦР и т. д. В результате образуется двутсцепочечная ДНК, идентичная искомому гену. Одинаковыми буквами со щтрихом или без (А и А, В и В и т. д.) обозначены комплементарные участки ДНК. <a href="/info/98217">Нуклеотидная последовательность</a> каждого олигонуклеотида соответствует таковой определенных сегментов ДНК.

    Однако оказалось, что такое строгое каноническое спаривание оснований не является об им правилом для взаимодействия первого остатка антикодона с третьим остатком кодона. Прежде всего было замечено, что если аминокислота кодируется двумя, тремя или четырьмя кодонами, то первые два нуклеотидных остатка кодонов всегда идентичны, а третий различается (см. рис. 3). Следовательно, аминокислота строго кодируется двумя первыми буквами кодона и менее строго — третьей. С другой стороны, было обнаружено, что рибосомы, программированные разными кодонами для одной и той же аминокислоты, могут связывать одну и ту же тРНК, т. е. тРНК может узнавать более чем один кодон. Например, одна и та же фенилаланиновая тРНК узнает как UUU, так и UU . Анализируя эти и некоторые другие факты, Ф. Крик вьщвинул гипотезу о неоднозначном спаривании первого нуклеотида антикодона с третьим остатком кодона он предположил возможность нестрогого соответствия [c.155]

    С самого начала мы исходили из того, что молекулы ДНК содержат очень большое число нуклеотидов, соединенных в регулярную линейную цепь. И здесь наши рассуждения частично основывались на соображениях простоты. Хотя химики-органики в соседней лаборатории Александра Тодда считали, что именно таким и должно быть расположение нуклеотидной основы молекулы, они были еще далеки от того, чтобы химическим путем установить идентичность всех связей между нуклеотидами. Но если это не так, то как же в таком случае молекулы ДНК могут укладываться в кристаллические агрегаты, изучаемые Морисом Уилкинсом и Розалинд Фрэнклин Поэтому мы решили, пока не зайдем в тупик, считать строение сахаро-фосфатного остова весьма регулярным и искать такую спиральную пространственную конфигурацию, при которой все группы этого остова имели бы одинаковое химическое окружение. [c.37]

    Если К и Крл распределены одинаково, то следует оценить возможность того, что вид распределения к связан не с БГК а с матрицей сходства анализируемых ПП. Для этого достаточно получить выборку, состоящую из случайных нуклеотидных последовательностей того же размера и с тем же частотным составом что и в ПП. с матрицей сходства, идентичной матрице сходства исходной реальной выборки. При этом из рассмотрения необходимо исключать высококонсервативные участки функциональных сайтов в реальных ПП. [c.83]

    Рекомбинантные клоны могут быть идентифицированы и по синтезируемому ими продукту. Но чаще приходится идентифицировать непосредственно нуклеотидную вставку с использованием методов гибридизации. С этой целью бактериальные колонии выращивают на нитроцеллюлозных фильтрах, помещенных на чашку Петри с питательной средой. Далее приготовляют реплики к фильтру с исходными колониями прижимают свежий нитроцел-люлозный фильтр, который затем переносят на чашку Петри с плотной питательной средой, где образуются колонии, идентичные первым. [c.121]


    Если пренебречь асимметрией пары оснований, то можно заметить, что в составе двойной спирали одна нуклеотидная цепь связана с другой осью симметрии 2-го порядка. Этот элемент симметрии, порождаемый антипараллельным расположением цепей, делает молекулу ДНК с обоих концов одинаковой—как с точки зрения человека, рассматривающего модель, так и с точки зрения фермента, вступающего с молекулой во взаимодействие. В действительности две цепи не идентичны, а генетическая информация может считываться с тех участков, которые располагаются на поверхности в районе большой бороздки (рис. 2-23,Л). [c.133]

    Это наглядно иллюстрируется одной из последних работ [11] по белку оболочки вируса табачной мозаики, где определялась последовательность во фрагменте РНК эта нуклеотидная последовательность была переведена в аминокислотную, которую в свою очередь можно сравнить с экспериментально найденными аминокислотами. Как видно из рис. 1.6, эти два полипептида никоим образом не идентичны ни по аминокислотной последовательности, ни по составу аминокислот. [c.18]

    До сих пор не раскрыты в деталях молекулярные механизмы передачи генетической информации, закодированной в нуклеотидной последовательности ДНК. Различают три основных этапа реализации генетической информации. На первом этапе-этапе репликации происходит образование дочерних молекул ДНК, первичная структура которых идентична родительской ДНК (копирование ДНК). Репликация ДНК является ключевой функцией делящейся клетки и частью таких биологических процессов, как рекомбинация, транспозиция и репарация. На втором этапе, названном транскрипцией, генетическая информация, записанная в первичной структуре ДНК, переписывается в нуклеотидную последовательность РНК (синтез молекулы РНК на матрице ДНК). На третьем этапе-этапе трансляции генетическая информация, содержащаяся уже в нуклеотидной последовательности молекулы РНК, переводится в аминокислотную последовательность белка. Далее представлены основные итоги исследований и наши представления о биосинтезе полимерных молекул ДНК, РНК и белка, полученные к середине 1996 г. [c.478]

    На месте преступления обнаружен один-единственный волос предполагаемого преступника. В нем содержится 10-20 пикограмм (10 г) ДНК. Чтобы охарактеризовать столь малое количество ДНК и определить, идентична ли ее нуклеотидная последовательность таковой у ДНК подозреваемого, нужно 10-100 нано-грам (10" г) ДНК. Как получить ее Какую информацию вам нужно собрать, прежде чем предпринимать какие-то действия  [c.104]

    Идентификация клонов. Если вставка содержит гены, способные к экспрессии в новом хозяине, рекомбинантные клоны могут быть идентифицированы по синтезируемому ими продукту. Однако чаще приходится идентифицировать непосредственно нуклеотидную вставку, для чего используют методы гибридизации. Бактериальные (нлн фаговые) колонии выращиваются на нитроцеллюлозных фильтрах, помещенных на чашку Петри с питательной средой (рис. 253). После этого приготавливаются так называемые реплики — к фильтру с исходными колониями прижимается свежий нитроцеллюлозный фильтр, который затем переносится на чашку Петри с плотной питательной средой, где на нем образуются колонии, идентичные первым. [c.436]

    Иногда понятия "генная инженерия" и "биотехнология" отождествляются (А А Баев, 1984), хотя несомненно генная инженерия представляет собой один из методов науки биотехнология В основу генноинженерных методов заложена способность ферментов — рестриктаз расщеплять ДНК на отдельные нуклеотидные последовательности, которые могут быть использованы для встраивания их в геномы бактериальных плазмид и фагов с целью получения гибридных, или химерных форм, состоящих из собственной ДНК и дополнительных встроенных фрагментов несвойственной им ДНК Поэтому методами генетической инженерии добиваются клонирования генов, когда выделяют нужный отрезок ДНК из какого-либо биообъекта и затем получают любое количество его, выращивая колонии генетически идентичных клеток, содержащих заданный участок ДНК Другими словами клонирование ДНК — это получение ее генетически идентичных копий [c.179]

    Межнуклеотидные связи в РНК полностью идентичны таковым в ДНК и столь же строго однотипны. Во всех случаях связь между нуклеотидами в цепи главных валентностей идет за счет фосфатного мостика между третьим и пятым гидроксилами рибозных компонентов двух смежных нуклеотидных остатков. Цепь РНК, как и ДНК, является неразветвленной. [c.651]

    В различных клетках и тканях одного и того же организма ДНК имеет идентичный или по крайней мере достаточно близкий нуклеотидный состав на него не оказывают влияния стадия развития, возраст, питание и прочие физиологические факторы или условия окружающей среды. [c.133]

    Другой вариант образования субгеномных мРНК реализуется у коронавирусов. В зараженной клетке поми.мо геномной РНК синтезируется шесть классов субгеномных мРНК. Нуклеотидные последовательности всех этих (+)РНК идентичны не только на З -конце, но и на 5 -конце. Объясняется это следующим образом (рис. 168). Как и в других системах, сначала с геномной РНК считывается (—)нить. Синтез всех (+)це-пей начинается на З -конце (—)матрицы . Однако связь между синтезируемой (- -) нитью и матричной (—)ни-тью весьма слаба. После образования 5 -концевого лидерного сегмента (-Ь)нити длиной около 70 нуклеотидов этот лидер имеет высокий шанс отделиться от матрицы. В дальнейшем он опять взаимодействует с той же или другой молекулой (—)РНК- Однако, поскольку в матрице имеются характерные прямые повторы, З -конец лидерного сегмента может присоединиться либо к тому месту, от- [c.322]


    Аффинная хроматография НК на сорбентах, лигандами которых являются тоже нуклеиновые кислоты, базируется на их комплементарном взаимодействии с образованием достаточно прочных двунитевых структур — двунитевых ДНК и РНК нли ДНК—РНК-гибридов. Такие структуры образуются и надежно сохраняются лишь тогда, когда строго комплементарные участки имеют протяженность в десятки нуклеотидных звеньев. Эта степень соответствия не может быть случайной, а реализуется только в том случае, когда одна из НК была синтезирована по матрице второй НК (или ей идентичной). Разумеется, как иммобилизованная НК, так и очищаемая должны быть однонитевыми, а условия связывания с сорбентом должны быть благоприятными для их гибридизации. [c.441]

    Реакция протекает с выделением энергии (ЛС = —7,5 ккал/моль). В тканях млекопитающих известны три изозима пируваткиназы, каждый состоит из четырех идентичных субъединиц. Изозимы имеют молекулярную массу от 200 000 до 250 000 Да молекулярная масса субъединицы — от 50000 до 61 000 Да. Фермент характеризуется высокой специфичностью по отнощению к фосфоенолпирувату, менее специфичен к нуклеотидному субстрату. Пируваткиназа относится к группе аллостерических ферментов. Изозимы пируваткиназы отличаются своими регуляторными свойствами. Ферментативная реакция, катализируемая высокоочищенной пируваткиназой из скелетных [c.269]

    В геномах низших эукариот обнаружены М.г.э. разных типов, среди к-рых лучше всего изучена т. наз. последовательность Ту1 дрожжей. Этот элемент представлен в геноме 4-35 кого1ями, локализация к-рых отличается у разных штаммов. Ту1 содержит 5,6 тыс. пар нуклеотидов и ограничен прямыми повторами, содержащими ок. 300 пар нуклеотидов (т. наз. 8-последовательностн). Копии Ту1 не полностью идентичны друг другу и составляют таким образом гетерог. семейство. В том случае, если две копии Ту1 заключают между собой клеточшле гены, они перемещают нх по геному, т.е. образуют истинные транспозоны. Включение Ту1-подобных элементов в регуляторные зоны генов может вызывать не только инактивацию локусов, но и изменения механизма их регуляции, что, по-видимому, связано с присутствием в нуклеотидной последовательности Ту1 специфич. участков узнавания регуляторных белков. [c.80]

    Как и в случае 16S (18S) РНК, довольно протяженная З -концевая последовательность 23S (28S) РНК не входит в состав главных доменов, а лищь образует несколько спиральных шпилек. В 23S РНК бактерий 110-нуклеотидная З -концевая последовательность сложена в три шпильки (две простые и одна составная из двух спиралей, разделенных неспаренным участком, см. рис. 45). В рибосомах хлоропластов высших растений 100-нуклеотидная З -концевая последовательность в цепи 23S РНК отсутствует и представлена в виде отдельной цепочки 4,5S РНК. 4,5S РНК складывается в две шпильки (одна простая и одна составная из двух спиралей), гомологичные (даже почти идентичные) З -концевым шпилькам 23S РНК бактерий. [c.89]

    РНК белок. Первый этан переноса информации, на котором не происходит перекодирования, носит название транскрипции, а второй этан, на котором имеет место перекодирование, называется трансляцией. Другими словами, нуклеотидные последовательности ДНК и РНК. либо идентичны, либо комплементарны друг другу, тогда как аминокислотная последовательность в белке представляет собой лишь аналог нуклеотидных последовательностей ДНК или РНК. До 1961 г. многие исследователи полагали, что рибосомная РНК — это и есть информационная РНК, т. е. что каждому гену соответствует определенный тип рибосом, функционирующих в качестве устойчивых матриц для синтеза специфического белка. В пользу этой модели свидетельствовал тот факт, что часть рибосомной РНК синтезируется с высокой скоростью, в то время как основная ее часть метаболически весьма стабильна. Обнаруженная в дальнейшем инфекционность очищенных РНК из некоторых вирусов Грастений также рассматривалась рядом исследователей как подтверждение этой модели. Однако вскоре было установлено большое число фактов, сделавших неприемлемой гипотезу о матричной функции рибосомной РНК. Приведем некоторые из них. [c.502]

    МОЖНО воспользоваться кинетическими данными. Константы стабильности М -нуклеотидных и Са-нуклеотидных комплексов почти идентичны, но распад Са +-комплексов происходит в 1000 раз быстрее, чем соответствующих М +-комплексов [762]. Не кальций, а магний, полураспад АТР- и АОР-комплексов которого имеет порядок миллисекунд, был избран для подавления АТРазной активности миозина в состоянии расслабления мышцы и для проведения относительно медленных конформационных изменений (/1/2 > 1 мсек), которые происходят на стадиях каталитического действия АТРазы актин-активированного миозина, равно как и некоторых других ферментов [758]. [c.288]

    Всегда приводится последовательность той или иной нити ЛНК, которая идентична нуклеотидной последовательности транскрибнр>емой РНК, за исключением замены Т на и. [c.175]

    Вся информация о строении и функционировании любого живого организма содержится в закодированном ввде в его генетическом материале, основу которого составляет дезоксирибонуклеиновая кислота (ДНК). ДНК большинства организмов — это длинная двухцепочечная полимерная молекула. Последовательность мономерных единиц (дезоксирибонуклеотидов) в одной ее цепи соответствует (комплементарна) последовательности дезоксирибонуклеотидов в другой. Принцип комплементарности обеспечивает идентичность новосинтезированных молекул ДНК, образующихся при их удвоении (репликации), исходным молекулам. Индивидуальными генетическими элементами со строго специфичной нуклеотидной последовательностью, кодирующими определенные продукты, являются гены. Одни из них кодируют белки, другие -только молекулы РНК. Информация, содержащаяся в генах, которые кодируют белки (структурных генах), расшифровывается в ходе двух последовательных процессов синтеза РНК (транскрипции) и синтеза белка (трансляции). Сначала на определенном участке ДНК как на матрице синтезируется матричная РНК (мРНК). Затем в ходе согласованной работы многокомпонентной системы при участии транспортных РНК (тРНК), мРНК, ферментов и различных белковых факторов осуществляется синтез белковой молекулы. Все эти процессы обеспечивают правильный перевод зашифрованной в ДНК генетической информации с языка нуклеотидов на язык аминокислот. Аминокислотная последовательность белковой молекулы однозначно задает ее структуру и функции. [c.29]

    Направление цепей в двойной спирали по отношению к меж-нуклеотидным связям (фосфодиэфирным мостикам) взаимно противоположно, т.е. цепи антипараллельны. Если например, на приведённой выше формуле в верхней цепи фосфодиэфирные СВЯЗИ между А и G и далее принадлежат к типу 5 - 3 , то в нижней цепи связи между основаниями Т и С, комплементарными основаниям А и G, принадлежат к типу 3 ->5 Описанное выше строение ДНК установлено для так называемой В-формы ДНК, степень кристалличности которой была определена при влажности образца около 90 %. Считается, что такая форма характерна для ДНК, находящейся в растворе и in vivo. При снижении влажности препарата до 70 % В-форма переходит в более высококристаллическую А-форму, в которой пары оснований повёрнуты на 20° от плоскости, перпендикулярной оси спирали на один оборот спирали (период идентичности 2,8 нм) приходится 11 остатков нуклеотидов ширина двойной правосторонней спирали составляет 2,2 нм. Переход от В-фор-мы к А форме укорачивает цепь примерно на 25 %. Ешё одна вторичная структура, в которой может существовать ДНК, назьшастся С-формой, в ней шаг спирали составляет 3,3 нм, а на каждом витке спирали располагается 9 пар оснований. [c.117]

    Химическая структура нуклеиновых кислот будет описана в 2.3. Здесь же уместно кратко описать основные принципы, заложенные в структуре молекулы ДНК, которые обеспечивают возможность самокопирования ДНК независимо от нуклеотидной последовательности. При делении клетки информацию, заложенную в молекулах ДНК этой клетки в виде определенной последовательности нуклеотидов, необходимо передать двум вновь образованным дочерним клеткам. Поэтому из одной молекулы ДНК перед клеточным делением должно образоваться две с той же нуклеотидной последовательностью. В живых организмах ДНК в период между ее удвоением всегда существует в виде двух связанных друг с другом полинуклеотидных цепей (нитей). Связь эта осуществляется в результате того, что каждый из четырех составляющи. ДНК типов нуклеотидов резко предпочтительно взаимодействует с одним из тре.ч остальных. Поэтому нуклеотидные последовательности этих нитей взаимно однозначно соответствуют друг другу, или, как принято говорить, комплементарны друг другу. Следовательно, каждая цепь содержит информацию о комплементарной нуклеотидной последовательности другой цепи. Будучи разделенными, цепи со.чраняют необходимую информацию для построения из нуклеотидов новы.к комплементарны. цепей и, таким образом, осуществляют воспроизведение информации, заложенной в двуспиральной структуре. Процесс самоудвоения ДНК, т.е. образования двух новых двуни-тиевых молекул ДНК, идентичных первоначальной молекуле, называют репликацией ДНК. Химические события, лежащие в процессе репликации, состоят в последовательном присоединении нуклеотидов друг к другу. Этот процесс в живых организмах осуществляет специальный фермент — ДНК-полимераза. Изучение свойств и механизмов функционирования этого фермента в клетке показало, что он работает только в присутствии материнской двуспиральной ДНК. Цепи материнской ДНК направляют образование новых комплементарных цепей, т.е. на каждой стадии роста новой цепи осуществляют отбор одного из четырех мономеров и присоединения его к растущей цепи. [c.18]

    Одно из более сложных применений молекулярной селекции нуклеиновых кислот связано с попытками создать на этой основе рибозимы с новыми каталитическими функциями. С этой це.пью необ.ходимо создать новые методы селекции. Как уже говорилось в 6.4, открытие рибозимов вызвано повышенный интерес к возможности участия рибозимов на первых этапах эволюции. Для этой цели необходимы рибозимы с синтетическими функциями. Ниже приводится пример получения с помощью молекулярной селекции нуклеиновых кислот фермента, катализирующего реакцию соединения двух олигорибоиуклеотидов, один из которых (донорный) несет на 5 -конце трифосфатную группу, с помощью которой с отщеплением пирофосфата осуществляется образование новой межнуклеотидной связи с 3 -ОП-группой акцепторного олигонуклеотида. Эта реакция по своему типу идентична реакции элонгации полинуклеотидной цепи, в ходе которой осуществляется перенос нуклеотидного остатка от нуклеозид-5 трифосфата на 3 -ОН-группу растущей полинуклеотидной цепи. С.хема селекции представлена на рис, 87. Для большей эффективности этого процесса трифосфатная группа и 3 -ОН-группа донора долясны быть сближены. Это можно сделать создав конструкцию (рис. 87, а), в которой эти две группы оказываются комплементарными соседним нуклеотидам стебля в шпилечной структуре. Па 5 -конце акцепторного [c.307]

    Было выяснено, что нуклеотидный состав ДНК настолько типичен для каждого вида бактерий, что при изменчивости бактерий по типу расщепления на 5- и Н-варианты, они имеют идентичный состав ДНК. Установлено также, что бактерии, относящиеся к разным систематическим группам, имеют сходный нуклеотидный состав ДНК (кишечная палочка и некоторые коринебактерии 50—52% ГЦ псевдомонасы и микобактерии 57— 70% ГЦ). Культуры бактерий с одинаковым составом ДНК не обязательно родственны. Существует известная корреляционная связь между нуклеотидным составом и антигенной структурой [12]. Пока не удалось установить связи между составом ДНК и принадлежностью бактерий к грамположительной группе. Близкородственные бактерии патогенного и сапрофитного видов, гемолитические и негемолитические оказались показателями специфичности ДНК. [c.54]

    Ясно, что наиболее надежным доказательством идентичности структур продукта и затравки явилось бы установление идентичности нуклеотидных последовательностей в молекулах этих соединений. Однако, поскольку определение нуклеотидных последовательностей длинных отрезков ДНК — все еще нерешенная экспериментальная задача, приходится полагаться на менее прямые способы доказательства. Корнбергом был разработан новый подход к этой проблеме — так называемый метод определения частот ближайших соседей. Очевидно, что для нуклеиновой кислоты, содержащей четыре разных основания, существует шестнадцать возможных дипуклеотид-ных комбинаций (последовательностей). Метод ближайших соседей состоит в определении абсолютной частоты, с которой каждый из этих динуклеотидов встречается в исследуемом образце ДНК. Результат такого анализа приведен в табл. 57. [c.510]

    Сравнение частот ближайших соседей и нуклеотидных составов ДНК-затравки и ДНК-продукта ясно указывает на матричную роль затравки. Однако из приведенных выше данных не следует, что молекулы продукта и затравки полностью идентичны. Действительно, по крайней мере в условиях реакции in vitro, структуры продукта и затравки, по-видимому, неодинаковы. Как было отмечено выше, физические свойства ДНК-продукта близки, но не идентичны физическим свойствам ДНК-затравки. Кроме того, электронно-микроскопическое исследование ДНК, синтезированной в присутствии нативной двухцепочечной ДНК-затравки, показало, что в синте- [c.511]


Смотреть страницы где упоминается термин Нуклеотидные идентичные: [c.22]    [c.149]    [c.201]    [c.341]    [c.82]    [c.240]    [c.22]    [c.149]    [c.201]    [c.519]    [c.163]    [c.341]    [c.84]    [c.863]    [c.935]    [c.969]    [c.194]    [c.514]   
Гены (1987) -- [ c.308 , c.350 ]




ПОИСК







© 2025 chem21.info Реклама на сайте