Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Генетика бактерий мутации

    Количество погибающих бактерий и крупных вирусов (вакцина) вегетативных форм зависит от условий облучения (дозы, интенсивности, температуры и плотности ионизации), как и количество облученных спермиев дрозофилы, в которых возникают мутации. Поэтому мы истолковали гибель бактерий и крупных вирусов как результат возникновения летальных мутаций генов. Это объяснение носит предварительный характер, так как в настоящее время о генетике бактерий и вирусов практически ничего неизвестно. Однако такое объяснение кажется правдоподобным, так как с его помощью можно не только понять результаты опытов облучения, но и определить на основании этих результатов число генов в клетке, причем у бактерии оно оказывается меньше, чем у дрозофилы, а у вируса вакцины меньше, чем у бактерии. Если представление о летальном действии как о летальной мутации распространить и на мелкие кристаллизующиеся вирусы, то на основании опытов по облучению их нужно будет считать отдельными голыми генами. Таким образом, число генов в клетке, необходимое для того, чтобы объяснить летальное действие облучения летальными мутациями, увеличивается от вирусов к бактериям и от бактерий к дрозофиле, как и следовало ожидать, исходя из общих соображений. [c.253]


    Полученные Лурия и Дельбрюком статистические данные в пользу спонтанного происхождения мутаций бактерий и проведенное ими определение частоты мутаций не просто знаменуют собой начало генетики бактерий. Эта работа представляет собой также и первый из нескольких случаев удачного выбора экспериментального материала, способствовавших дальнейшему развитию этой науки. Как выяснилось позднее, Лурия и Дельбрюк смогли обнаружить спонтанное мутирование бактерий к устойчивости к фагу потому, что они использовали фаг Т1, который является вирулентным бактериофагом. Случись Лурия и Дельбрюку выбрать какой-либо из фагов, получивших позднее название умеренных , и они вынуждены были бы сделать вывод, что бактерии приобретают признак устойчивости в результате контакта с антибактериальным агентом на чашке с агаром, и волей-неволей внесли бы свой вклад в укрепление последнего оплота ламаркизма. [c.141]

    Прежде чем обсуждать генетику бактерий, мы должны познакомиться с типами изучаемых мутаций и с используемыми для них обозначениями. Е. соИ дикого типа растет в лабораторных условиях на очень простой среде, единственным органическим составляющим которой служит источник углерода как правило это глюкоза. Штаммы дикого типа прототрофны (см. главу 4) они способны синтезировать любые сложные органические молекулы, необходимые для их метаболизма и роста. Эти биосинтетические способности (анаболические функции) требуют работы (экспрессии) многих существенных (т.е. необходимых для существования бактерий) генов. Многие мутации, нарушающие экспрессию необходимых биосинтетических функций, называются условно летальными (см. главу 7), поскольку бактерии с такими мутациями могут существовать только при добавлении в среду необходимых органических молекул. Такие мутанты называются ауксотрофами (т.е. требующими дополнительного питания). При изучении организации бактериальных генов мы будем рассматривать ауксотрофные мутации только в качестве генетических маркеров. Более подробно они будут обсуждаться в главе 10. Фенотип ауксотрофных бактерий обозначают латинскими буквами, указывающими соединение, которое необходимо добавлять в среду для их нормального роста. Например, Met , Thi и Pur обозначают, соответственно, мутантные штаммы, нуждающиеся в метионине, тиамине и пурине соответствующие прототрофные фенотипы (дикий тип) обозначаются символами Met, Thi и Pur.  [c.228]

    Те же эксперименты, которые включали поиск генетической рекомбинации родительских наследственных признаков, не давали положительных результатов. Их неудача объяснялась природой используемых генетических признаков, которые позволили бы обнаружить явление генетической рекомбинации только в том случае, если бы она происходила с очень высокой частотой. Однако вскоре после того, как Лурия и Дельбрюк установили спонтанную природу бактериальных мутаций и разработали способ количественного определения, необходимого для получения значащих результатов в бактериальной генетике, Джошуа Ледерберг придумал, какого рода эксперименты могут доказать существование генетической рекомбинации у бактерий. [c.214]


    Как отмечалось в гл. 7, генетический анализ генома вирусов формально развивался аналогично генетическому анализу, используемому при исследовании организмов, имеющих мейоз. Однако, когда этот же подход был использован для анализа мутаций Е. соИ, возникло множество затруднений, пока генетики не осознали, что никакая аналогия между половым процессом у мейотических организмов и у бактерий невозможна. В настоящее время существуют представления, согласно которым бактерия содержит множество генетических элементов, более или менее независимых друг от друга и взаимодействующих между собой посредством механизмов, не находящих формальной аналогии с процессом мейоза. Открытие класса генетических элементов, названных эписомами, (в особенности F-эписом) и трансдуцирующих фагов дало возможность успешно применить принципы генетического анализа к бактериям и весьма подробно описать организацию бактериального генома. [c.228]

    Таким образом, даже беглый перечень особенностей большинства мутаций, наблюдаемых у человека, и у других хорошо известных видов, таких, как дрозофила, обнаруживает их неадаптивный характер. Мутации возникают не для того, чтобы обеспечить лучшую приспособленность организмов к условиям их обитания. Этот факт, уже давно очевидный генетикам, изучающим высшие организмы, не признавался бактериологами до конца 40-х годов. Большинство ученых, изучавших мутации бактерий, считали, что мутации происходят в бактериальных популяциях в ответ на возникновение новых селективных условий. Например, когда в чашку Петри со средой, содержащей пенициллин, высевают чувствительные к пенициллину бактерии, на поверхности агара появляется несколько устойчивых к этому антибиотику колоний, причем их устойчивость наследуется. Данный факт объясняли тем, что устойчивость к пенициллину индуцируется самим пенициллином. Методология, применявшаяся бактериологами, когда они использовали селективные среды для вьщеления мутантных штаммов, не позволяла ответить на вопрос, отбираются ли при этом мутанты, уже ранее существовавшие в популяции, или само их возникновение индуцируется фактором отбора. Мало того, некоторые микробиологи вообще подвергали сомнению факт существования генов в бактериях По их мнению, отбираемые колонии могут состоять из бактерий, приобретших новое физиологическое состояние, позволяющее им приспособиться к жизни в новых условиях. Фактически такие взгляды тормозили признание идеи о том, что ДНК представляет собой наследственное вещество, хотя на это однозначно указывала трансформирующая активность ДНК, выделенной из пневмококка (см. гл. 4). [c.24]

    Важный, но часто игнорируемый вопрос. Вопрос о том, насколько широко человеческие популяции подвергаются воздействию данного агента-решающий при получении любой оценки генетической опасности, связанной с химическими мутагенами. Это соображение иногда упускают из виду в дискуссиях, посвященных химическим мутагенам. Здесь опять, как и в случае многих других проблем, наиболее правдоподобное объяснение можно найти, обратившись к социологии науки. Большинство научных работников, занимающихся проблемами химического мутагенеза,-это специалисты в области экспериментальной генетики с опытом изучения мутаций в определенных тест-системах, например на мышах, хромосомах человека или бактериях. Вполне понятно, что их основной заботой является эффективность методов тестирования. Токсикологи, работающие в фармацевтических компаниях, которые заимствуют эти методы в целях практического их использования, обычно не знакомы с генетическими специальностями. Эпидемиологи, с другой стороны, часто очень мало интересуются генетикой и не проявляют активного интереса к проблемам мутагенеза. [c.270]

    Мутации, вызываемые транспозонами. В генетике бактерий все большее значение приобретает метод получения мутаций с помопдью транс-позонов. Транспозоны (Тп) представляют собой короткие двойные цепи ДНК, которые состоят из более чем 2000 пар оснований и обычно обусловливают устойчивость к одному антибиотику, в исключительных случаях-к нескольким, Транспозоны способны перепрыгивать из одного участка генома в другой, в частности из бактериальной хромосомы в плазмиду и обратно таким образом, они могут включаться в различные участки генома (см. разд. 15.3,1), В случае внедрения транспозо-на в какой-либо структурный ген хромосомы нуклеотидная последовательность этого гена будет нарушена и генетическая информация не сможет транслироваться в функционально полноценный полипептид. ВЬзникнет инсерционный мутант. [c.447]

    В предыдущей главе мы без особых сомнений использовали основное менделевское понятие о гене и представление о генных мутациях в применении к бактерии, в частности к Е. oli. Но такое произвольное распространение принципов наследственности, разработанных классическими генетиками для эукариотов, на царство скромных прокариотов не имеет ничего похожего на действительную историю развития генетики бактерий. Вплоть до 40-х годов лищь немногие из бактериологов думали, что бактерии вообще обладают какой-то наследственностью. Прокариоты, как отмечалось в гл. И, не имеют настоящего клеточного ядра и не обладают цитологически различимыми хромосомами. Поэтому считалось, что бактерии представляют более анархическую форму жизни, не подвластную восседающим на своем ядерном троне генам. Только после второй мировой войны развитие молекулярной генетики привело к тому, что бактерии стали наконец объектом интенсивных генетических исследований. [c.130]


    М. Бейеринк был, возможно, первым, кто осознал, что изменчивость бактерий может представлять собой проявление генных мутаций. Эту идею он выдвинул в первом десятилетии этого века, вскоре после того, как де Фриз (повторно открывший Менделя коллега Бейеринка) предложил термин мутация для описания наследуемых отклонений у высших форм. (В результате проведенных недавно исторических изысканий было обнаружено, что у Бейеринка имелся оттиск статьи Менделя и что он мог обратить внимание де Фриза на эту статью.) В то время как в течение первых четырех десятилетий этого века генетика высших форм достигла необычайного подъема, генетика бактерий находилась все это время в упадке. В эти годы, по-видимому, мало было людей, способных проводить или хотя бы заинтересованных в том, чтобы проводить на бактериях количественные генетические опыты, аналогичные тем, которые привели к выяснению механизма наследственности у эукариотов. Поэтому еще долго не получало признания то, что корни изменчивости бактерий лежат в мутациях и дарвиновском отборе, —даже после того, как за несколько десятилетий биологи полностью осознали роль генных мутаций как эволюционного источника разнообразия живых форм. О таком положении свидетельствует, например, следующий факт. В обстоятельной книге [c.131]

    Подобно тому как рождение генетики датируют 1865 г., когда появилась статья Менделя, так и рождение генетики бактерий можно датировать 1943 г., когда Лурия и Дельбрюк опубликовали статью, озаглавленную Мутации, в результате которых бактерии, чувствительные к вирусу, приобретают устойчивость к нему . Лурия и Дельбрюк были отнюдь не первыми, кто исследовал мутирование у бактерий (как было отмечено в гл. V, за 35 лет до этого была опубликована работа Массини, посвященная Е. соИ mutabile), так же как и Мендель не был первым, кто для изучения наследственности использовал скрещивание растений. Но Лурия и Дельбрюк своей статьей сделали для генетики бактерий то же, что сделал Мендель для общей генетики. Они впервые показали, как следует ставить опыты, как обрабатывать результаты этих опытов и, что самое главное, как следует рассуждать, чтобы получить осмысленные и однозначные результаты. [c.133]

    Другой тип мутантов, сыгравших большую роль в развитии генетики фагов, был открыт Лурия, который еще в период зарождения генетики бактерий как науки изучал мутации Е. соН Топ - Ton т. е. от чувствительности к устойчивости по отношению к фагу Т1 (гл. VI). Аналогичные спонтанные мутации приводят к тому, что из чувствительных к фагу Т2 клеток Е. соН (Tto ) дикого типа образуются мутанты Tio ". Устойчивость этих бактериальных мутантов обусловлена структурной модификацией их клеточной оболочки, в результате которой не происходит стерео-специфической фиксации органов адсорбции отростка фага Т2 на соответствующих рецепторах клетки. В результате фаг уже не может присоединиться к клетке, и, следовательно, ДНК фага не может быть инъецирована внутрь клетки хозяина. Почему же тогда, несмотря на то что бактерии могут мутировать в устойчивую к фагу форму, в природе до сих пор существуют чувствительные к бактериофагу штаммы Почему в результате естественного отбора чувствительные формы не заменились устойчивыми Почему бактериальные вирусы до сих пор не лишились всех подходящих хозяев и не вымерли в результате этого Ответить на эти вопросы, как и на многие другие вопросы, касающиеся проблем эволюции, не так просто, однако одной из причин сохранения в природе бактериальных штаммов, чувствительных к фагу, могут быть открытые Лурия в 1945 г. мутанты с измененным спектром литического действия. Такие мутантные фаги с измененным спектром литического действия способны преодолеть устойчивость нечувствительных к фагу мутантов бактерий благодаря небольшим изменениям структуры органа адсорбции (по сравнению с фагом дикого типа). Эти структурные изменения позволяют мутантным органам адсорбции осуществлять стереоспецифическую реакцию с рецепторами мутантной фагоустойчивой бактерии, несмотря на модификацию клеточной оболочки, препятствующей присоединению фага дикого типа. Однако появление мутантов с измененным спектром литического действия ни в коей мере не может положить конец борьбе за существование, так как бактериальный штамм, устойчивый к фагу дикого типа и чувствительный к мутантному фагу с измененным спектром литического действия, может образовывать сверхустойчивый бактериальный мутант, устойчивый к обоим фагам. На появление сверхустойчивого бактериального штамма фаг, чтобы не оказаться побежденным, может ответить образованием мутанта со сверхизмененным спектром литического действия. Таким образом, сосуществование в природе бактерий и бактериальных вирусов поддерживается за счет тонкого мутационного равновесия, спасающего обоих антагонистов от полного вымирания. [c.280]

    В 1914 г. В. Генри обнаружил среди выживших после облучения ультрафиолетовым светом бактерий большое количество, как он считал, наследственных вариантов, отличающихся от нормального типа по таким свойствам, как морфология колоний и патогенность. Из этого наблюдения Генри заключил (за 13 лет до того, как Мёллер доказал мутагенное действие рентгеновских лучей на плодовую мушку), что ультрафиолетовые лучи мутагенны для бактерий. Однако доказательство этого утверждения пришло лишь много лет спустя с расцветом в сороковых годах генетики бактерий, когда Демерец показал, что среди 10 клеток Е. соИ штамма Топ (чувствительного к фагу Т1), выживших после облучения определенной дозой ультрафиолетовых лучей, доля мутантов Топ более чем в тысячу раз превышает спонтанный уровень этих мутантов среди необлученных бактерий. Вскоре ультрафиолет стал одним из наиболее широко распространенных мутагенов, используемых для получения мутантов бактерий. Многие мутанты, которые упоминались в предыдущих главах, были отобраны среди клеток, выживших после облучения ультрафиолетом немутантного родительского штамма. Так, например, были получены использованные в опытах по конъюгации (гл. X) Hir- и Р -штам-мы Жакоба и Вольмана с множественными мутациями, а также мутанты Тгр Яновского, использованные для изучения тонкой генетической структуры генов trp (гл. XIV). Однако, хотя молекулярный механизм спонтанных мутаций, а также мутаций, индуцированных аналогами оснований и акридиновыми красителями, к 1960 г. был достаточно хорошо изучен (см. гл. XIII), выяснение механизма мутаций, вызванных ультрафиолетом — исторически первым и долгое время наиболее широко распространенным бактериальным мутагеном, — задержалось до тех пор, пока не был выяснен механизм репараций. [c.381]

    Температурочувствительные мутации широко используются и в генетике бактерий. Необходимые для нормального существования (существенные) гены, которые невозможно выявить посредством ауксотрофных мутаций, обычно могут быть идентифицированы с помощью температурочувствительных мутаций. Примерами жизненноважных функций могут служить функции, связанные с синтезом белков или нуклеиновых кислот из молекул-предшественников-аминокислот или нуклеотидов (подробное обсуждение мутаций, затрагивающих синтез ДНК, содержится в главе 13). [c.229]

    Важное достижение М. б.-раскрытие на мол. уровне механизма мутацгш. Главную роль в нем играют выпадения, вставки и перемещения отрезков ДНК, замены пары нуклеотидов в функционально значимых отрезках генома. Определена важная роль мутаций в эволюции организмов (в СССР инициатором исследований мол. основ эволюции бьш А. Н. Белозерский). Раскрыты мол. основы таких генетич. процессов у прокариот (бактерии и синезеленые водоросли) и эукариот (все организмы, за исключением прокариот), как рекомбинация генетическая - обмен участками хромосом, приводящий к появлению бактерий (вирусов) с новым сочетанием генов. Достигнуты значит, успехи в изучении строения клеточного ядра, в т.ч. хромосом эукариот. Усовершенствование методов культивирования и гибридизации животных клеток. способствовало развитию генетики соматич. леток (клеток тела). Была развита идея о репликоне (элементарная генетич. структура, способная к репликации как единое целое), объясняющая важные аспекты регуляции репликации (Ф. Жакоб и С. Бреннер, 1963). Значит, успех М. 6.-первый КИМ. синтез геиа, к-рый осуществил в 1968 X. Корана. Данные о хим. природе и тонком строении генов способотвовали разработке методов их выделения (впервые осуществлено в 1969 Дж. Беквитом). [c.110]

    Почти до середины XX в. среди бактериологов господствовало мнение, что в отличие от других живых организмов бактерии при неблагоприятных внешних воздействиях выживают не благодаря случайным генетическим изменениям (мутациям), а вследствие того, что именно эти воздействия в большинстве случаев запускают физиологические процессы, которые и позволяют бактериям выжить. Эта теория была опровергнута исследованиями С.Е. Лурия и М. Дельбрюка (Luria S.E., Delbru k М., Geneti s 28 491-511, 1943), которые доказали, что устойчивость Е. соИ к бактериальным вирусам (бактериофагам) обусловлена именно произошедшими в них мутациями, а не реакцией бактерий на воздействие со стороны бактериофага. Эти данные нашли подтверждение в работах других авторов, изучавших последствие других неблагоприятных внешних воздействий. Исследования Лурия—Дельбрюка положили начало современной генетике микроорганизмов. [c.26]

    Основные научные работы посвящены механизму наследственности в бактериях и бактериофагах и биохимическим эффектам мутаций. Изучал (с 1954) природу взаимоотношений между профагом и генетическим материалом бактерий. Исследовал генетику ли-зогении. [c.187]

    Американский генетик Л. Стадлер независимо от Мёллера успешно индуцировал при помощи рентгеновских лучей мутации у кукурузы и ячменя, а после 1927 г. это было проделано на многих видах растений и животных, а также на бактериях и даже вирусах. Таким образом, открытие Мёллера распространяется на весь органический мир. В связи с этим [c.209]

    То обстоятельство, что в макромолекуле ДНК существуют точки, атакуемые с разной вероятностью, не вызывает удивления. Здесь может сказаться различная плотность расположения водородных связей в зависимости от природы соседних звеньев, а также различная прочность химических связей, вызываемая электронным влиянием я-электронов соседних оснований. Вполне можно себе представить, что определенные сочетания соседних звеньев являются слабыми местами, куда направляется атака химических мутагенов, в частности и тех эндогенных химических веществ, которые производят спонтанные мутации. Существование горячих точек на генетической карте не является привилегией только бактерий и вирусов. Фактически генетика высших организмов давно сталкивалась с этим явлением. Известны необычайно высокие вероятности мутации некоторых генов кукурузы (вероятность спонтанных мутаций достигала 0,1% вместо обычных 10 % на поколение). Известны также многочисленные случаи неустойчивых , легко ревертировавших мутаций с необычайно лржюкой вероятностью реверсии, доходившей до 1 % на поколение, изучение горячих точек и их специфичности к действию му-гёнов дает надежду овладеть в будущем процессом направленного -мутагенеза, т. е. сознательным управлением изменчивостью организмов. При этом сами по себе мутации сохранят характер статистического явления, которое можно рассматривать в принципе лишь с помощью понятий теории вероятностей. [c.409]

    Зимой 1954 г. мы с Э. Адельбэргом начали читать в Калифорнийском университете курс лекций в намерении донести до студентов Беркли последнее слово молекулярной генетики. Мы испытывали необычайное удовлетворение, видя перед собой неискушенную аудиторию, еш,е ничего не слыхавшую о двойной спирали ДНК, которой мы возвещали наступление новой эры в познании наследственности. В те дни мы были так переполнены энтузиазмом, что ухитрились прочитать целых тридцать лекций о мутациях и генетических рекомбинациях у бактерий и их вирусов, хотя тогда обо всем этом было известно довольно мало. Как изменились времена Из чрезвычайно специальной, известной лишь посвященным области, которой занимались очень немногие тесно связанные друг с другом ученые, молекулярная генетика выросла теперь в полновесную академическую дисциплину, основные положения которой входят в программу средней школы. Я продолжал читать этот курс в период почти взрывоподобного развития молекулярной генетики, и если бы я ежегодно не прочищал материал, то к сегодняшнему дню число лекций, необходимых для изложения этого предмета, возросло бы по крайней мере в десять раз. Предлагаемая книга по своему содержанию и объему соответствует современному состоянию этой науки. [c.11]

    Проходивший летом 1946 г. в Колд-Спринг-Харборе 11-й симпозиум по количественной биологии был посвящен Наследственности и изменчивости у микроорганизмов . Этот симпозиум стал памятным событием в истории молекулярной генетики, так как именно на этом симпозиуме было сделано сообщение о существовании пола у бактерий. (К этому вопросу мы вернемся в последующих главах.) Однако для участников симпозиума вопросом первостепенной важности были не эти совершенно неожиданные открытия, а несомненный триумф теории один ген —один фермент. Несколько докладчиков сообщили о своих исследованиях ауксотрофных мутантов у грибов и бактерий. Изложенные ими факты показывали, что рост большинства ауксотрофных мутантов действительно можно восстановить, добавляя к минимальной среде лишь один какой-нибудь метаболит. После одного из таких докладов выступил Макс Дельбрюк и указал, что, как ни убедительны на первый взгляд эти данные, они все же не доказывают правильности теории один ген —один фермент, хотя, безусловно, они и не противоречат тезису, что каждый ген контролирует образование отдельного фермента, катализирующего отдельную стадию реакции огромного метаболического ансамбля. Сам метод выделения ауксотрофов, говорил он, исключает объективность выводов, так как дает возможность обнаруживать мутанты именно такого типа, которые, судя по всему, всем хочется обнаружить. Так, если допустить, что существуют гены, контролирующие не один, а сразу очень много ферментов, то по крайней мере один из этих ферментов мог бы быть связан с незаменимой для клетки функцией. И тогда ни одно из присутствующих в полной среде относительно простых веществ не могло бы компенсировать отсутствие такой незаменимой функции. Иными словами, даже если бы допущение один ген — много ферментов было правильным, мутации в таких генах при использовании описанного метода отбора мутантов все равно бы обнаружить не удалось, так как соответствующие мутантные клетки вообще не образовывали бы колоний на агаре с полной средой. В заключение своей критики Дельбрюк предложил, чтобы поборники теории один ген — один фермент разработали такие опыты, которые бы дали возможность опровергнуть предложенную им теорию, так как если мы такими методами не располагаем, то вся масса совместимых с этим тезисом доказательств ничего не дает в его подтверждение . [c.122]

    После того как в гл. УП было рассказано об открытии Эйвери, установившего, что трансформирующий фактор бактерий представляет собой не что иное, как ДНК, все дальнейшее изложение велось на основе молекулярного взгляда на ген как на полинуклеотидную цепь, последовательность оснований которой определяет с помощью генетического кода последовательность аминокислот в полипептидной цепи. Однако такая точка зрения вовсе не обязательна для объяснения большинства нз рассмотренных до сих пор опытов по мутациям и генетическим рекомбинациям у бактерий и их вирусов. Все эти опыты можно почти так же хорошо объяснить с классической точки зрения о неделимом гене, определяющем один фермент. Сейчас мы рассмотрим работу, заполнившую наконец тот разрыв, который существовал между выводами, основанными исключительно на данных формальной генетики с использованием различий признаков, с одной стороны, и чисто химическими исследованиями на уровне нуклеотидных последовательностей — с другой. [c.304]

    Р. в Нанси. Его обучение на мед. ф-те Парижского ун-та (1939— 1940) было прервано войной. В 1940—1944 в качестве хирурга служил во французских войсках, сражавшихся против гитлеровцев в Северной Африке. В 1945— 1947 завершил свое мед. образование в Парижском ун-те. В 1950 начал работать нод руководством А. М. Львова в Пастеровском ин-те, с 1960 директор отдела клеточной генетики в этом ин-те. С 1955 проф. Коллеж де Франс, Осн, работы посвящены изучению механизма наследственности бактерий и бактериофагов и биохимическим эффектам мутаций. Изучал (с 1954) природу взаимоотношений между профагом и генетическим мат-лом бактерий. Исследовал генетику лизог ении. [c.164]

    Прогресс в бактериофагии обусловлен прежде всего приложением к бактериофагам (в том числе фагам промышленных бактерий) принципов генетических исследований и сосредоточением усилий многих исследователей иа изучении относительно небольшого числа фагов (лямбдоидные фаги, группа Т-четных фагов и др.), послуживших основными фаговыми моделями при разработке принципов молекулярной генетики. Исследование ряда модельных фагов достигло сейчас очень высокого уровня. Для некоторых из них полностью расшифрована нуклеотидная после-довательнось генома, установлены границы генов, определено положение многих мутаций в последовательности нуклеотидов, выявлены промоторы, операторы, терминаторы, определены возможные рамки считывания и соответствующие им белковые продукты и т. д. Вместе с тем продолжается выявление и новых фагов. Некоторые из них становятся удобными моделями для решения определенных проблем. Например, липидсодержащие бактериофаги используют как модель для изучения структуры мембраны бактериофаги, геном которых представлен несколькими фрагментами РНК, служат хорошей моделью при изучении некоторых сторон репликации вирусов с такими же геномами бактериофаги-транспозоны — прекрасная модель в изучении механизмов транспозиции, играющих существенное значение в канцерогенезе, эволюции и т. д. [c.215]

    Однако при индуцированном мутагенезе in vivo воздействию мутагена подвергается весь геном, в силу чего этот метод имеет ряд недостатков. Главный из них — образование множественных мутаций, что приводит к большим трудностям при интерпретации результатов. Постоянной мечтой генетиков был локализованный мутагенез, при котором действию мутагена подвергается только определенная часть генома. Частично эта проблема решается с использованием транспозонов, а также трансдуцирующих фагов и Р (К )-эписом, содержащих определенные участки бактериального генома. Однако не у всех бактерий гены можно переводить на трансдуцирующие фаги и эписомы и использовать транспозонный мутагенез. Эти методы не применимы к микроорганизмам, для которых трансдукция и конъюгация не известны. [c.160]

    Пришедшие в генетику новые методы позволили расширить знания о структуре генетического материала. По современным данным, он оказался намного менее статичен, чем представлялось раньше. Так, например, известны описанные Барбарой Мак-Клинток мобильные контролирующие генетические элементы в геноме кукурузы, способные перемещаться с одного гена на другой, увеличивая их нестабильность. Соматическими мутациями, связанными с присутствием мобильных контролирующих элементов, обусловлена мозаичная окраска початков у кукурузы. Найдены мобильные генетические элементы и у дрожжей. Позже было выявлено несколько классов мобильных генетических элементов у бактерий и показано, что они могут встраиваться во многие участки генома клетки хозяина. В зависимости от структуры мобильного генетическо- [c.58]


Смотреть страницы где упоминается термин Генетика бактерий мутации: [c.152]    [c.9]    [c.272]    [c.111]    [c.159]    [c.507]    [c.104]    [c.189]    [c.111]    [c.181]   
Методы общей бактериологии Т.3 (1984) -- [ c.8 , c.64 ]




ПОИСК





Смотрите так же термины и статьи:

Бактерии, генетика

Век генетики

Генетика

Мутации у бактерий



© 2025 chem21.info Реклама на сайте