Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фотосинтез организмы

    Когда зеленое растение растет, оно улавливает и запасает солнечную энергию. Питаясь зелеными растениями или мясом животных, которые едят зеленые растения, человек также зависит от Солнца, хотя и не столь непосредственно. Даже автомобили, работающие на бензине, и тепловые электростанции, в топках которых сжигается каменный уголь, потребляют ископаемую солнечную энергию, т. е. энергию, уловленную в процессе фотосинтеза организмами, жившими миллионы лет назади [c.11]


    Крахмал образуется в результате фотосинтеза в листьях растений, откладывается про запас в клубнях, корневищах, зернах. В пищеварительном тракте человека и животных крахмал подвергается гидролизу и превращается в глюкозу, которая усваивается организмом. [c.494]

    При фотосинтезе растения поглощают солнечную энергию и синтезируют из простых молекул большие, богатые энергией молекулы. Энергия солнца переходит в химическую энергию этих молекул. При попадании в организм [c.238]

    Что же заставило атмосферу измениться столь существенным образом По-видимому, перестройка явилась побочным следствием появления нового способа запасания энергии, фотосинтеза, который давал его обладателям огромное преимущество над простыми ферментативными поглотителями энергии. Организмы, в которых развилось это новое свойство, могли использовать энергию солнечного света для синтеза своих собственных энергоемких молекул и уже не зависеть от того, что находится среди их окружения. Они стали предшественниками всех зеленых растений. Сегодня все живые организмы можно подразделить по метаболизму на две категории те, которые способны изготовлять свою собственную пищу при помощи солнечного света, и те, которые не имеют такой возможности. Поскольку организмы второй категории существуют за счет поедаемых ими организмов первой категории, накопление энергии посредством фотосинтеза является источником движущей силы для всего живущего на земле. [c.334]

    Вода расщепляется на элементы, что создает источник атомов водорода для восстановления СО2 в глюкозу, а нежелательный газообразный кислород выделяется в атмосферу. Энергия, необходимая для осуществления этого в высшей степени несамопроизвольного процесса, обеспечивается солнечным светом. В наиболее древних формах бактериального фотосинтеза в качестве источника восстановительного водорода использовались не вода, а сероводород, Н28, органические вещества или сам газообразный водород, но легкая доступность воды сделала этот источник наиболее удобным, и в настоящее время он используется всеми водорослями и зелеными растениями. Простейшими организмами, в которых осуществляется фотосинтез с высвобождением О2, являются сине-зеленые водоросли. Их правильнее называть современным названием цианобактерии, поскольку это в самом деле бактерии, научившиеся добывать собственную пищу из СО2, Н2О и солнечного света. [c.335]

    Молекулой, синтезируемой в процессе фотосинтеза в качестве накопителя энергии, является глюкоза, один из простейших углеводов. Углеводы играют роль не только накопителей химической энергии, но и важного строительного материала в растениях из них состоят древесина, хлопковое волокно, ткани стеблей более мягких растений и др. Глюкоза полимеризуется в целлюлозу, которая является основой структурных материалов и не может быть пищевым продуктом для человека, и в крахмал, который накапливается в семенах, зернах и корнях растений и может использоваться в пищу, так как при его разложении в организме человека снова получается глюкоза. [c.338]


    Более сложным является проведение так называемой таксономической индикации, т. е. определение геологического возраста исходных биологических молекул. Вопрос этот значительно более сложен, чем генетическая типизация нефтей, однако он весьма интересен, так как связан с особенностями распространения различных органических соединений в живых организмах и современной эпохи, и далекого прошлого. Этими проблемами широко занимается, в частности, такая научная дисциплина, как органическая геохимия. Трудности, здесь возникают по ряду обстоятельств. Прежде всего, тип органических молекул, получаемых при фотосинтезе, постоянен, однако некоторая эволюция (в молекулярном аспекте) все же наблюдается [36, 37]. О стабильности процесса фотосинтеза свидетельствует хотя бы тот факт, что за миллиарды лет его существования живая клетка синтезирует все тот же один из 8 энантиомеров фитола и один из 256 энантиомеров холестерина ( ). [c.256]

    Действительно, общий цикл обмена веществом и энергией для живых организмов можно упрощенно представить как инициирующее этот цикл образование сложных молекул типа углеводов из СО2 и воды в ходе фотосинтеза растений с последующей деградацией продуктов фотосинтеза вновь до СО2 и воды в процессах дыхания в рассматриваемом организме. При этом уменьшение энтропии происходит только в момент электронного возбуждения молекулы хлорофилла за счет поглощения фотосинтезирующими организмами носителей чистой свободной энергии — квантов солнечного света, в результате чего становится возможным протекание первичных фотосинтетических реакций образования энергоемких веществ. Все происходящие далее биохимические процессы носят необратимый характер и идут только с увеличением [c.297]

    Так как в процессе фотосинтеза происходит выделение кислорода, в зоне фотосинтеза его концентрация высока. На больших глубинах концентрация кислорода резко понижается, поскольку он расходуется при окислении мертвых растительных и животных организмов. Как видно из рис. 17.3, концентрация кислорода минимальна на глубине приблизительно 1 км, в той же самой области, где концентрация фосфора вое станавливается до своего максимального уровня. [c.149]

    Важнейшим способом превращения солнечной энергии в формы, доступные для использования живыми организмами, является фотосинтез. В ходе фотосинтеза в листьях растений диоксид углерода (углекислота) и вода превращаются в углевод глюкозу, одну из разновидностей сахаров (см. разд. 25.4) этот процесс сопровождается выделением кислорода  [c.442]

    В данной главе мы бросили беглый взгляд не некоторые важнейшие составляющие биосферы-той части физического мира, в которой протекают жизненные циклы организмов. Наряду с соответствующими условиями окружающей среды для поддержания жизни необходим какой-либо источник энергии. Первичным источником необходимой энергии является Солнце. В процессе фотосинтеза растения превращают солнечную энергию в химическую. Солнечная энергия поглощается растительным пигментом хлорофиллом и затем используется для образования углевода глюкозы и О2 из СО2 и Н2О. [c.464]

    Углекислота атмосферы связывается также в процессах жизнедеятельности растительных организмов, т. е. в процессах фотосинтеза, происходящих при непосредственном участии лучистой энергии Солнца [c.100]

    Образующийся озон поглощает УФ-радиацию Солнца в области 250—260 нм, губительно действующую на живые организмы. К другой важной фотохимической реакции относится реакция выделения кислорода и ассимиляция диоксида углерода в процессе фотосинтеза. Фотохимическое разложение бромида серебра лежит в основе фотографического процесса. [c.269]

    Велика роль координационных соединений в жизнедеятельности животных и растительных организмов. Достаточно назвать гемоглобин — переносчик кислорода в крови, хлорофилл, с которым связаны процессы фотосинтеза в растениях. [c.244]

    Основным исходным материалом для химических превращений в клетке являются углеводы, которые образуются при фотосинтезе (при реакции, протекающей в зеленых растениях в присутствии хлорофилла) из СО2 и воды. Эти вещества подвергаются химическим превращениям как в самих растениях, так и в организмах травоядных и плотоядных животных, куда они поступают в виде пищи. Эти биохимические явления называются метаболическими процессами. Метаболические процессы приводят к появлению необходимых для организма соединений и снабжают организм энергией. Протекание этих процессов часто исследуется с помощью меченых соединений, т. е. соединений, содержащих радиоактивные изотопы Н, С, [c.180]

    Комплексообразователем в хлорофилле выступает магний, а в гемоглобине — железо. В одной плоскости с металлом располагаются четыре атома азота органического лиганда. По одну сторону от плоскости железо присоединяет молекулу белка (глобина), а по другую сторону — молекулу кислорода. Такой продукт называется оксигемоглобином. Он образуется в легких, где гемоглобин присоединяет кислород воздуха и далее в виде оксигемоглобина разносится по всему организму. В кровеносных капиллярах происходит отщепление кислорода, который используется для осуществления различных ферментативных процессов окисления органических веществ. Гемоглобин возвращается в легкие и снова участвует в переносе кислорода. Хлорофилл играет важнейшую роль в процессах фотосинтеза, протекающих во всех зеленых растениях. [c.154]


    Жизнь на Земле существует по крайней мере столько же, сколько и самые ранние осадочные породы, ископаемые микроорганизмы в которых свидетельствуют об обильной жизни 3,5 млрд. лет назад (3,5-Юэ лет). Первоначальный вклад кислорода в атмосферу давали утерявшие ядро бактериальные клетки. Клетки животных, растений и грибов имеют ядро, но нуждаются в кислороде в относительно больших количествах. Произошла революция, когда кислород стал более доступным в атмосфере и появились ядерные клетки, а затем животная н растительная жизнь. Дыхание и широкомасштабный фотосинтез стали важными процессами на этой стадии, вероятно, когда концентрация кислорода составила примерно 10 САУ в некоторый момент времени между 2,0 и 0,57 млрд. лет назад, захватывая начало кембрийского периода (0,57 млрд. лет назад). С началом кембрийского периода сложность форм жизни, как известно, стала быстро возрастать, и были заложены основы всех современных ветвей организмов. Развитые, уже не микроскопические, формы жизни были найдены на берегу (на [c.213]

    Фотосинтез — вероятно, наиболее важный из большого числа интересных фотохимических процессов, известных в биологии. От него зависела эволюция атмосферы Земли животные, поедая растения, также черпают энергию Солнца, запасенную фотосинтезом. Согласно оценке, общая масса органического вещества, созданного зелеными растениями в течение биологической истории Земли, составляет 1 % массы планеты. Каждый год в процессе фотосинтеза запасается энергия, эквивалентная десятикратному годовому ее потреблению человечеством. В этом разделе мы обсудим фотосинтез зеленых растений, хотя существуют также другие фотосинтезирующие организмы (например, некоторые бактерии), у которых процессы фотосинтеза могут несколько отличаться. [c.228]

    Таким образом, суммарный результат фотосинтеза состоит в связывании диоксида углерода, окислении воды до молекулярного кислорода и синтеза углеводов. Образование кислорода как побочного продукта фотосинтеза не является универсальным свойством фотосинтезирующих организмов. Например, у некоторых бактерий фотосинтеза процесс выражается схемой [c.162]

    В живых организмах различные классы комплексных соединений выполняют специфические функции в обмене веществ. Исключительно велика роль природных комплексных соединений в процессах дыхания, фотосинтеза, биологического окисления и в ферментативном катализе. Так, например, ионы Ре ,М + в качестве комплексообразователей входят в состав важнейших природных соединений — гемоглобина и хлорофилла. Структурные формулы этих веществ весьма сложные. Тем не менее общий принцип их построения можно выразить следующей схемой  [c.207]

    Окислительно-восстановительные реакции самые распространенные и играют большую роль в природе и технике. Они являются основой жизни на Земле, так как с ними связаны дыхание и обмен веществ в живых организмах, гниение и брожение, фотосинтез в зеленых частях растений и нервная деятельность человека и животных. Их можно наблюдать при сгорании топлива, в процессах коррозии металлов и при электролизе. Они лежат в основе металлургических процессов и круговорота элементов в природе. С их помощью получают аммиак, щелочи, азотную, соляную и серную кислоты и многие другие ценные продукты. Благодаря окислительно-восстановительным реакциям происходит превращение химической энергии в электрическую в гальванических элементах и аккумуляторах. Они широко используются в мероприятиях по охране природы. [c.226]

    Микроэлементы повышают активность ферментов, катализирующих биохимические процессы в организмах растений, способствуют синтезу белков и нуклеиновых кислот, витаминов, сахаров и крахмала. Некоторые микроэлементы оказывают положительное действие на фотосинтез, ускоряют рост и развитие растений, созревание семян. [c.311]

    Углеводы являются очень распространенными природными соединениями, входят в состав растеиий и живых организмов. В растениях они образуются в результате фотосинтеза.  [c.333]

    Все низкомолекулярные компоненты клеток должны в определенных условиях подвергаться деградации. Иногда деградация должна обеспечить удаление скопившихся излишков тех или иных соединений. В ряде важных случаев такая деградация является поставщиком необходимых строительных компонентов и обеспечивает биоэнергетические потребности организма. Так, в 1.2 уже отмечалось, что окисление глюкозы и других органических соединений атмосферным кислородом является важнейшим источником энергии у аэробных, не способных к фотосинтезу организмов. Процессы окислительной и неокислительной деструкции также являются многостадийными и проходят через ряд промежуточных соединений. Например, важным этапом окислительной деградации глюкозы является ее превращение в соль пировиноградной кислоты — пируват СНзСОСОО". Этот процесс, который детально рассматривается в 8.2, проходит через образование девяти промежуточных соединений. Дальнейшее полное сгорание цирувата до СО2 и воды проходит еще через одиннадцать промежуточных веществ (см. 8.4). [c.59]

    Трудно переоценить значение возникновения клеточного дыхания, которое высвободило силы, скрытые в живых организмах. Ни один организм, зависящий целиком от брожения, не мог теперь сравниться с ними. Ведь даже после появления фотосинтеза организмы лищь кое-как перебивались, находясь все время на грани гибели. Они могли, конечно, создавать свои собственные органические вещества, но ровно столько, сколько их было нужно, чтобы хоть как-нибудь просуществовать. Брожение — это такой расточительный образ жизни, что фотосинтез едва успевал обеспечивать его. При дыхании вещества организма использовались столь экономно, что, наконец, удалось кое-что отложить про запас. В сочетании с брожением фотосинтез дал возмол ность организмам поддерживать свое существование, в сочетании с дыханием он дал избыток. Если выразить это в экономических терминах, то фотосинтез обеспечил организмам прожиточный минимум, а дыхание обеспечило им накопление капитала. Именно этот капитал они в основном и вложили в гигантское предприятие эволюции органического мира. [c.31]

    Решающее влияние на эволюцию всех сфер Земли, прежде ьсего на биосферу, оказали зарождение и последующее интенсивное развитие фотосинтеза зеленых растений, затем возникновение живых организмов. Развитие фотосинтеза приводило к выделению больших количеств свободного кислорода в гидросфере, затем в с1Тмосфере и накоплению массы живого вещества сначала в океане, потом и на суше. Поглощаемый фотосинтезом углекислый газ постепенно убывал в атмосфере Земли. Аммиак и метан практически полностью исчезли из атмосферы в результате окисления. Земная атмосфера приобретала качественно новый, близкий к современному азотно-кислородный состав с небольшим количеством углекислого газа. Подобные процессы с изменением химического состава происходили как в морской воде, так и горных породах Земли. И морской воде в результате ускорения окислительных процессов кислоты превратились в соли металлов (хлориды, сульфаты натрия, 1 алия, кальция и т.д.). С изменением pH морской воды менялись [c.42]

    Фотосинтез — единственный из всех типов химических реакций (терм ических, каталитических, ферментативных, радиационных и фо— тохимических), позволяющий при мягких термобарических параметрах б o фepы осуществить невероятную, с точки зрения термодинамики химическую реакцию, протекающую с увеличением свободной энергии. Он обеспечивает прямо или косвенно доступной химической энергией все земные организмы и, как будет показано ниже, является источником образования горючих ископаемых. Обратный фотосинтезу процесс представляет собой знакомую всем нам химическую реак1,,ию горения твердых, жидких и газообразных горючих ископаемых с выделением большого количества энергии. Следовательно, растительный и животный мир, а также органические горючие ископаемые Земли есть не что иное как аккумулированная энергия Солнца На современном этапе эволюции Земли ежегодно в результате фотосинтеза образуется 150 млрд. т органического вещества, усваивается 300 млрд. т СО и выделяется около 200 млрд. т свободног о кислорода. Благодаря только фотосинтезу в первичной атмосфере Земли появился кислород, возник озоновый экран, создались условия для биологической деятельности. При гибели организма происходит обратный процесс [c.43]

    Насколько сейчас известно, наша планета образовалась приблизительно 4,6 миллиарда лет назад, а простейшие ферментирующие одноклеточные формы жизни существуют 3,5 миллиарда лет. Уже 3,1 миллиарда лет они могли бы использовать фотосинтез, но геологические данные об окислительном состоянии осадочных отложений железа указывают, что атмосфера приобрела окислительный характер лишь 1,8-1,4 миллиарда лет назад. Многоклеточные формы жизни, которые, по-видимому, зависели от изобилия энергии, возможного только при дыхании кислородом, появились приблизительно от 1000 до 700 миллионов лет назад, и именно в то время наметился путь дальнейшей эволюции высших организмов. Наиболее революционизирующим шагом, после зарождения самой жизни, было использование внепланетного источника энергии, Солнца. В конечном итоге это превратило жалкие ростки жизни, которые утилизировали случайно встречающиеся природные молекулы с большой свободной энергией, в огромную силу, способную преобразовать поверхность планеты и даже выйти за ее пределы. [c.337]

    Биологический фактор (обрастание подводной части конструкции различными морскими растительными и животными организмами мшанками, балянусами, диатомеями, кораллами) значительно ускоряет коррозию металлов в морской воде, вызывая разрушение защитных покрытий (что наблюдается в присутствии ба-лянусов), неравномерную аэрацию и щелевую коррозию. Кроме того, некоторые организмы (например, диатомеи) в результате фотосинтеза выделяют кислород, что ускоряет коррозию, так как [c.400]

    Зоопланктон представлен в первую очередь крошечными рачками, особенно веслоногими рачками-копепо-дами. Зоопланктон питается фитопланктоном или, как говорят, выедает фитопланктон. Один рачок-конепода в сутки съедает 100 тысяч диатомей Остальное доедается бактериями, наибольшая масса которых живет тоже в зоне фотосинтеза. Зоопланктон в свою очередь поедается нектоном — рыбами, китами и другими животными. Получаются, как говорят биологи, пищевые цепи. В данном случае пищевая цепь такова фитопланктон — зоопланктон — нектон. Одни организмы пожирают другие, эти другие в свою очередь поедаются третьими, третьи — четвертыми и т. д. (рис. 9). [c.35]

    Полисахариды (полимерные углеводы) представляЕот собой соединения, состоящие из многих сотен нли даже тысяч моносаха-ридных звеньев. Их состав отвечает общей формуле (СеНюОз) . Наиболее важными среди полисахаридов являются целлюлоза и крахмал. Оба эти вещества образуются в растениях из диоксида углерода и воды в результате фотосинтеза. Целлюлоза — основной строительный материал растений, крахмал служит запасным пищевым фондом растений и находится в основном в семенах (кукуруза, картофель, рис, пшеница и др.). Углеводы служат источником питания человека. В организме человека и животных они превращаются в жиры и белки. Целлюлоза в виде хлопка и вискозы применяется для изготовления одежды и бумаги. [c.307]

    Диоксвд углерода содержится в воздухе (0,03 об. %) и в минеральных водах. Диоксид углерода ассимилируется зелеными растениями при фотосинтезе (с помощью содержащегося в растениях хлорофилла под воздействием солнечных лучей). При этом в растениях образуются органические вещества (глюкоза и др.), а кислород выделяется в атмосферу. Глюкоза в организмах животных и растений диссимили-руется, т. е. окисляется под действием кислорода в присутст- [c.151]

    Кислород в природе. Получение кислорода. Известно более 1400 минералов, содержащих кислород. Важнейшие кислородсодержащие минералы — кварц и его модификации, полевые шпаты, слюды, глины, известняки. Огромное количество кислорода находится в воде как в химически связанном, так и в растворенном состоянии. В свободном состоянии кислород находится в атмосфере (около 10 т). Кислород воздуха расходуется в процессах горения, гниения, ржавления, дыхания и непрерывно регенерируется за счет фотосинтеза. Кроме того, кислород является обязатель(гой составной частью организмов животных и растений. Так, в человеческом теле содержится до 65 мае. долей, % кислорода. [c.312]

    Хорошо известно, что АТФ как богатый энергией фосфат используется во многих биохимических процессах. Запасание химической энергии следует из возможности гидролиза АТФ до АДФ и Н3РО4 (около 25 кДж/моль). Поскольку реакция (8.46) может происходить независимо от восстановления СО2 в анаэробных условиях, представляется возможным первоначальное развитие организмов в направлении использования ими света для запасания энергии, а не для синтеза новых органических соединений. Возникновение собственно фотосинтеза было, таким образом, более поздним эволюционным этапом. [c.230]

    Фотосинтез является непременным условием жизни растений и животных, будучи фактически самым крупномасштабным синтетическим процессом на Земле. Как считает П. Нобел, за год фотосинтезирующими организмами фиксируется и переводится в форму органических соединений около 5-10 г (50 млрд. т) углерода, причем большая часть его фиксируется фитопланктоном, живущим вблизи поверхности океанов. Это количество соответствует параллелепипеду, сложенному из фотосинтетиче-ских продуктов, с основанием 1 км и высотой несколько более 100 км. Источником углерода для фотосинтеза служит атмосферный СО2 (содержание в атмосфере составляет 0,03%), а также СО2 и НСОз растворенные в воде озер и океанов. Из продуктов фотосинтеза, кроме органических соединений, очень важное значение имеет кислород, необходимый для всех организмов, обладающих дыханием. Весь кислород, содержащийся в атмосфере, был образован путем фотосинтеза за несколько тысячелетий. [c.161]

    Медь является микроэлементом. В организмах растений она стимулирует фотосинтез и дыхание, а также углеводный обмен. Недостаток меди в почве вызывает заболевания растений особенно бедны медью и нуждаются в микроудобрениях торфяные и болотные почвы. При этом мнкроудобрениями служат отходы от переработки медьсодержащих руд, а также соли меди. [c.437]

    Окислительно-восстановительные реакции постоянно протекают в живых организмах. Фотосинтез, дыхг ние и ряд других биологических процессов являются окислительно-восстановительными. [c.126]

    В живых организмах комплексные соединения выполняют специфические функции в обмене веществ. Огромна роль природных комплексных соединений в проц 2ссах фотосинтеза, биологического окисления, дыхания и в ферментативном катализе. [c.258]


Смотреть страницы где упоминается термин Фотосинтез организмы: [c.43]    [c.430]    [c.297]    [c.127]    [c.160]    [c.188]    [c.215]    [c.231]   
Происхождение жизни Естественным путем (1973) -- [ c.151 , c.273 ]




ПОИСК





Смотрите так же термины и статьи:

Фотосинтез



© 2025 chem21.info Реклама на сайте