Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Содержание ванадия, никеля и натрия в нефтях

    Основные компоненты внутренней золы нефтей — ванадий, никель, натрий, кальций, алюминий, железо. Общее количество внутренней золы в нефтях невелико, обычно ниже 0,05% однако следует иметь в виду, что ванадий, никель, в некоторых случаях и натрий почти всегда представляют основные элементы золы сернистых нефтей. Ванадий находится в нефти главным образом в виде сложных металлоорганических соединений, концентрирующихся в высокомолекулярной части сырья и переходящих при перегонке почти полностью в остаток [7, 15—17 ]. Исследования Л. А. Гуляевой [18] показали, что зола сернистых нефтей Урало-Волжских месторождений характеризуется высоким содержанием ванадия и никеля. Содержание окислов этих металлов в золе нередко составляет более 50%. В табл. 7. 1 приведено содержание ванадия в золе нефтей некоторых месторождений [15, 18, 19]. [c.415]


    По содержанию в высокосернистых нефтях металлы располагаются в ряд ванадий > никель > железо > нат рий > -кальций > медь > магний > марганец [191]. В сернистой шкапов-ской нефти ванадия содержится в 4 раза меньше, чем в высокосернистой нефти. По концентрации в шкаповской нефти можно выделить две группы элементов 1) 0,002—0,004% (ванадий, натрий, никель, кальций) 2) <0,0005% (железо, магний, медь, марганец). В обеих нефтях содержание меди, марганца и магния незначительно (табл. 41). [c.135]

    Пропуская сырую нефть или нефтепродукты через контактный материал, состоящий из окислов титана и алюминия или окислов железа и алюминия или немагнитного гематита, при 400—427 °С и 3,5—10,5 МПа, можно очистить сырье от ванадия и натрия, которые остаются на адсорбенте. Из остаточных нефтепродуктов (например отбензиненной нефти) металлы удаляют при контакте с немагнитным гематитом, имеющим частицы с поверхностью более 20 м2, при 410—470 °С, давлении 3,5—10,5 МПа, объемной скорости подачи сырья 0,5—2 ч-> в присутствии водорода [270]. После фильтрации нефти через слой фосфорнокислого катализатора при 100 °С и объемной скорости подачи сырья 1,0 ч содержание ванадия снизилось с 0,023 до 0,013% и никеля с 0,0053 до 0,0018% [271]. Имеются данные [272] об удалении металлов из нефтяного сырья, предназначенного для крекинга в псевдоожиженном слое. Сырье каталитического крекинга (мазут или отбензиненная нефть) контактируется с тонкоразмолотым катализатором крекинга при 150—540°С. Длительность контакта зависит от температуры при 260 °С — до 10 ч, при 540 °С — менее 1 мин. В то же время превращение тяжелого сырья в низкокипящие продукты не должно превышать 20—25%- Количество контакта должно быть от 0,1 до [c.185]

    Из приведенных данных видно, что осадки, образовавшиеся в топливах при контакте с медью, имеют повышенную зольность и меньшее содержание углерода и водорода. В составе золы найдены многие металлы и неметаллы, которые переходят в горючее из нефти при переработке (натрий, магний, кальций, титан, ванадий, никель и др.), в процессе хранения и перекачки (железо, цинк, медь, алюминий), применения (медь, железо, цинк, алюминий) и вследствие загрязнения топлива пылью из атмосферы (кремний, кальций, алюминий и др). 161]. Таким образом, металлорганические соединения оказывают значительное влияние на возникновение и коагуляцию частиц твердой фазы в топливах. [c.179]

    Анализ после озоления пробы. При определении свинца в сырых нефтях возникает еще одна трудность, связанная с высоким содержанием сопутствующих металлов (ванадия, никеля, железа, натрия), концентрация которых в 100—2000 раз превышает концентрацию свинца. Разработан непламенный атомно-абсорбционный метод определения свинца в сырой нефти после кислотного озоления пробы и соосаждения сопутствующих металлов гидроксидом тория [282]. Стандартный раствор неорганического соединения свинца (1,0 мкг/мл) готовят растворением 1,6 г нитрата свинца в 5 мл азотной кислоты (1 2) и разбавлением раствора водой до 1 л. Для приготовления раствора, содержащего 10 мг/мл тория, растворяют гидроксид тория (IV) в азотной кислоте (1 200) и разбавляют водой до нужного объема. [c.182]


    В очень малых количествах в нефтях присутствуют и другие элементы, главным образом металлы — ванадий, никель, железо, магний, хром, титан, кобальт, калий, кальций, натрий и др. Обнаружены также фосфор и кремний. Содержание этих элементов выражается незначительными долями процента. В различных нефтепродуктах был найден германий в количестве 0,15—0,19 г/т. [c.18]

    Из других элементов в нефти присутствуют - железо, магний, алюминий, медь, олово, натрий, кобальт, хром, германий, ванадий, никель, ртуть, золото и другие. Однако, содержание их менее 1 %. [c.20]

    В настоящее время установлено, что в нефтях разного происхождения присутствует более 60 элементов, из которых около 30 относятся к металлам. В нефти присутствуют - железо, магний, алюминий, медь, олово, натрий, кобальт, хром, германий, ванадий, никель, ртуть, золото и другие. Однако, содержание их менее 1 %. Среди отдельных металлов, содержание которых в нефтях превышает 10 %, доминируют V - 10 -10 % Ni - 10 -l 0 % Fe - 10 -l 0 % Zn - 10 -10 % Hg - около 10 % В - 10 -0,3 % Na, К, Са, Mg - 10 -10 %. Суммарное содержание в нефтях металлов в среднем колеблется от [c.40]

    В очень малых количествах в нефтях присутствуют и другие элементы, главным образом металлы — ванадий, никель, железо, магний, хром, титан, кобальт, калий, кальций, натрий и др. Обнаружены также фосфор и кремний. Содержание этих элементов выражается незначительными долями процента. [c.9]

    Соединения натрия могут попадать в топливо вследствие недостаточной промывки его водой после щелочной очистки, применяемой в отдельных случаях для снижения кислотности топлива или удаления из него сероводорода. Присутствие соединений ванадия возможно в топливах, полученных прямой перегонкой нефти соединения молибдена, а также кобальта, никеля и цинка могут попасть в реактивные топлива, прошедшие обработку в присутствии катализаторов, содержащих эти элементы. В комплексе методов квалификационной оценки реактивных топлив предусмотрено спектральное определение перечисленных элементов и установлено предельно допустимое их содержание (не более 10 %). [c.57]

    Электролиты для гальванических покрытий — идеальней случай для атомно-абсорбционного анализа. Электролит разбавляют и вводят в атомизатор определяют основные компоненты и примеси. В нефтяной промышленности определяют малые примеси никеля, меди, железа, натрия и ванадия в нефтепродуктах, так как эти примеси отравляют катализаторы, применяемые при переработке нефти определяют содержание свинца в бензине и металлов в смазочных маслах применяется также для анализа природных вод, сточных вод промышленных предприятий, воды для паровых котлов, а также атмосферных осадков. При очень малом содержании элементов (ниже предела обнаружения) проводят их концентрирование. [c.252]

    При содержании в пробе никеля в 2000, раз, ванадия в 500 раз, железа и натрия в 50 раз больше, чем свинца (0,02 мкг/мл), влияние этих металлов на результаты анализа становится значительным. Поэтому непосредственное определение свинца в растворе золы без удаления сопутствующих элементов приводит к заметным погрешностям, так как концентрация этих элементов в сырой нефти в 1000—2000 раз большая, чем концентрация свинца, обычное явление. При осаждении сопутствующих элементов гидроксидом тория их влияние полностью устраняется даже при совместном присутствии ванадия и железа в количествах, в 2000 раз, никеля и натрия в 10 000 раз превышающих содержание свинца. [c.183]

    При исследовании калифорнийской нефти Скиннер [58] показал, что можно уменьшить содержание металлических производных путем дегидратации влажной сырой нефти действием на нее переменного электрического поля высокого напряжения. Дальнейшее уменьшение содержания последних достигалось путем промывки относительно сухой нефти, полученной описанным выше способом, и повторной дегидратацией ее. С помощью этих двух операций было удалено 85% хлоридов из сырой нефти, и содержание минеральных веществ было уменьшено на одну треть. В полученной таким образом сухой нефти были спектроскопически обнаружены бор, магний, кремний, железо, медь, никель и ванадий, в то время как в исходной сырой нефти содержались кроме того также натрий и стронций. [c.273]

    В составе нефти в очень мальк количествах присутствуют и другие элементы, главным образом металлы алюминий, железо, кальций, магний, ванадий, никель, хром, кобальт, германий, титан, натрий, калий и др. Обнаружены также фосфор и кремний. Содержание этих "злементов не превышает нескольких долей процента, определяется геолог(гческими условиями залегания нефти. Так, основным элементами мезозойских и третичных нефтей является железо. В па-1еозойских нефтях Волго-Уральской области повышенное содержание ванадия и никеля. Считается, что часть микроэлементов находится в нефти с момента её образования в осадочных породах, а другая часть накашшвается в последующий период существования нефгей. [c.12]


    Тяжелые нефти и битумы отличаются от обычных нефтей повышенным содержанием металлов (ванадия, никеля, железа, молибдена, меди, натрия), серы, азота и асфальтенов. Например, в тяжелых нефтях содержится ванадия и никеля, мг/кг месторождение Атабаски (Канада)—250 и 100 Тиа-Хуана (Венесуэла) — 300 и 40 Хобо (Венесуэла) —420 и 100 Боскан (Венесуэла) — 1200 и 150. [c.4]

    Предложено определять кобальт и молибден в металлокомп-лекскых присадках к смазочным маслам [284], серу в нефтепродуктах [285] методом РФА с использованием рентгено-спектрального анализатора БАРС-1. Высоковязкие продукты разбавляли органическим растворителем. Содержание металлов определяли методом внешнего стандарта. Он позволил обнаружить содержание серы в дизельных топливах от 0,1 % и выше, а в вакуумных газойлях и твердых металлокомплексных соединениях—при концентрации 0,1%. Пробы органического происхождения сжигали в кислороде под давлением, в их золах устанавливали содержание свинца, кадмия, ртути и мышьяка [287]. Предварительное концентрирование микроэлементов использовано в [289]. Пробы нефти и нефтепродуктов обрабатывали серной и смесью (1 1) азотной и хлорной кислот. Ванадий, никель, железо осаждали из раствора, полученного после минерализации нефти, нефтепродуктов, диэтилдитиокарбаминатом натрия. Выпавший осадок помещали на фильтровальную бумагу, покрывали 6 мкм майлоровой пленкой и анализировали. Пределы обнаружения ванадия, никеля, железа составили 0,04 0,03 0,05 мкг соответственно. При анализе твердых проб подготовка образца к анализу проще. Для определения кобальта, никеля и [c.71]

    Пропуская сырую нефть или нефтепродукты через материал, состоящий из окислов титана и алюминия [254] или железа и алюминия [255], при температуре 400—427° и давлении 35—il05 ата, можно очистить сырье от ванадия и натрия, которые остаются на контактном материале. Металлические примеси из остаточных нефтепродуктов (например, отбензиненной нефти) удаляются при контакте с немагнитным гематитом имеющим частицы с поверхностью более 20 м , при температуре 410—470°, давлении 35—105 ат, объемной скорости подачи сырья 0,5—2 в присутствии 360—720 м 1м водорода [256]. При фильтрации нефти через слой фосфорнокислого катализатора При температуре 100° и объемной скорости подачи сырья 1,0 ч содержание ванадия снизилось с 0,0232 до 0,013 и никеля с 0,0053 до 0,0018% [257]. [c.60]

    Металлы, содержащиеся, в основном, в остаточных фракциях нефти, оказывают вредное воздействие на катализаторы каталитического крекинга, снижая их активность и способствуя повышению выхода газа, водорода и кокса. Железо, медь, хром, свинец - являются ядами, но их содержание в остатках и действие на катализатор незначительно. Наиболее отрицательно сказвшается впяяш№ никеля, -ванадия и натрия. [c.16]

    При помощи инфракрасной спектроскопии и аналитических методов можно определять структурные характеристики молекул, содержащихся во всех фракциях битумов, в частности в асфальтеновых, с расшифровкой типа конденсации, длины алифатических цепей, ароматичности и полярности> ИК-спектроскопию применяют также для изучения порфиринов ванадия и никеля, содержащихся в нефтях и битумах, для исследования кислородсодержащих функциональных групп в окисленных битумах. Таким методом показано, что омыляемые вещества битума содержат главным образом эфирные группы и что почти полностью отсутствуют ангидриды и лактоны. Методом селективного поглощения фракций показано различие химического состава битумов, полученных из разного сырья, а также изменение их строения по мере углубления окисления сырья. Растворы в четыреххлористом углероде или сероуглероде компонентов окисленных битумов (типов гель, золь — гель и золь), полученных разделением с использованием бута-нола-1 и ацетона и подвергнутых инфракрасному исследованию в области спектра 2,5—15 мк мкм) с призмой из хлористого натрия, показали, что в сильнодисперги-руемых битумах типа золь самое высокое содержание ароматических колец в каждом компоненте [480], Количество групп СНз почти одинаково в алифатических и циклических соединениях. Метиленовых групп парафиновых цепей значительно больше содержится в соединениях насыщенного ряда. Как правило, их число уменьшается при переходе битума от типа гель к типам золь — гель и золь. [c.22]

    Гидрогенизационное обессеривание нефтей и нефтяных остатков в условиях низких температур и давлений на стационарном слое катализатора представляет большие трудности, чем встречающиеся прн гидрообессеривании дистиллятных фракций. В исходном сырье могут присутствовать большие количества натрия, никеля, ванадия н других металлов, которые отлагаются на катализаторе, снижая его активность н избирательность и увеличивая гидравлическое сопротивлеипе слоя. Гпдрогеннза-цпонная очистка некоторых видов сырья, например с высоким содержанием смол и асфальтенов, затруднена вследствие их высокой термической стойкости. Несмотря на эти трудности, во многих случаях удается достигнуть достаточной степени обессеривания даже нри высоких объемных скоростях сырья (порядка нескольких сотен объемов на 1 объем катализатора в час). [c.442]

    Содержание натрия и никеля на уровне выше 1 мкг/г и ванадия на уровне выше 10 мкг/г в котельных топливах и сырых нефтях определяют пламенным атомио-абсорбционным методом 1Р [265]. В качестве растворителя иопользуют смесь уайт-спирита и изопропанола (9 1 по объему). Для приготовления эталонов используют тетрафенилборат натрия, 4-циклогексанбути-рат никеля и ди(1-фенил-бутандион-1,3)оксованадат или нафтенаты натрия, никеля и ванадия. При определении натрия в не- [c.191]

    С относительной погрешностью 1—3% найдено содержание натрия [334] в нефти. При нейтронно-активационном определении [335] примесей мышьяка, меди, брома, никеля, цинка и натрия в нефти пробу (5—7 мл) запаивают в полиэтиленовую или кварцевую ампулу и облучают вместе с монитором потока (серебряная фольга) 10 мин потоком тепловых нейтронов 10 нейтр/см -с или 1 ч потоком 10 нейтр/см -с. Облученную пробу количественно переносят в измерительную ампулу и при помоши 400-канального анализатора с сцинтилляционным детектором измеряют активности указанных радиоизотопов. Рассмотрены некоторые интерферируюшие реакции, мешающие анализу на мышьяк и медь. Показано, что предел обнаружения элементов может составлять, 10 % меди — 0,5, мышьяка — 0,1, брома— 10, никеля — 2, натрия — 0,3. После распада короткоживу-щих радионуклидов алюминия и ванадия в [336] определяют содержания аргона и марганца по фотопикам 1,29 и 0,85 МэВ соответственно. Те же авторы [337] разработали методику нахождения алюминия, ванадия, марганца, цинка и меди в сырой нефти и ее золе. При расчете содержания алюминия учитывают вклад мешающей ядерной реакции (л, р) А1, а также вводят поправку на вклад в анигилляционный гамма-пик 0,51 МэВ комптоновского рассеяния от гамма-линий радиоизотопа натрия-24. Для определения указанных элементов предложено три режима облучения 2, 10 и 20 мин. Относительная погрешность метода для ванадия, алюминия и меди составляет 8, 10 и 9% соответственно. Аналогичный способ использовали [347—349] для анализа на ванадий, натрий, алюминий, марганец в продуктах переработки нефти. [c.89]

    Методом графического расчленения кривой временного спада интенсивности фотопиков от радионуклидов ванадия-52, никеля-65, натрия-24 в [354, 361] устанавливали их содержание в нефти, ее фракциях и золах. Учитывая мещающее влияние радиоизотопов магния-27, галлия-72, натрия-24, авторы [355] показали возможность обнаружения марганца и меди в нефти, ее фракциях и золах. Применяя аналогичный подход к проведению анализа, в [356—358] разработаны методики деления никеля, ванадия, марганца, меди, хрома, железа, хлора, натрия в нефтях и нефтепродуктах. Относительная погрешность анализа на алюминий и ванадий составила 15—18% хлора, марганца и натрия— 8—13%, а предел обнаружения для алюминия — 5-10 %, ванадия — 10 , хлора — 2-10 марганца — 5-10 , натрия — 10 . В [359, 360] наряду с освещением отдельных методических вопросов активационного анализа изложены некоторые результаты, представляющие интерес для нефтяной геологии и геохимии. В комплект измерительной аппаратуры входили 256-канальный амплитудный анализатор и сцинтилляционные детекто--ры двух типов УСД-1 с кристаллом Nal(Tl) 40X40 мм и двухкристальный датчик с Nal(Tl) 80X80 мм. В большинстве случаев количественно определяли натрий, медь, марганец, бром, мышьяк и кобальт. Для количественной интерпретации гамма-спектров использовали программу МНК-512 и ЭВМ типа М-20. Для измерения активности радионуклидов элементов мышьяка, кобальта, железа и цинка использовали спектрометр суммарных совпадений с дискриминатором. [c.90]

    Шах и др. [363] разработали методики нахождения микроэлементов в нефти по коротко- и среднеживущим изотопам. Они применили облучение образцов до интегральной дозы 12-10 н/см в полиэтиленовых ампулах. После двухминутной выдержки (охлаждения) облученных образцов проводили измерение серы, хлора, кальция, ванадия, марганца с использованием р-фильтров из бериллия и свинца. Второе измерение проводили спустя 5—20 ч для обнаружения натрия, калия, меди, галлия, брома уже без применения фильтров р-поглощения. При определении меди вводили нормализирующий фактор от влияния радиоизотопа натрия-24 для энергии 511 кэВ. Статистическая погрешность для кальция, серы, калия-<21%, для остальных эле-ментов<5%. Высокая относительная погрешность для кальция и ванадия соответственно 7,2 и 8,8% возникает из-за большой загрузки аппаратуры. Рассмотрены мешающие реакции при нахождении серы, марганца, меди от хлора, железа и цинка соответственно. Они же в [364] продолжили работу по разработке методики анализа по долгоживущим изотопам. Интегральная доза облучения составляла 2,3-10 н/см . После 48 ч охлаждения (в основном для спада активности натрия-24) устанавливали содержание мышьяка и золота. При втором измерении в течение 40 000 с (после 10—12 дней охлаждения) находили хром, железо, кобальт-58 (для никеля), цинк, кобальт, скандий, селен, ртуть, лантан (для урана), сурьму, европий. Учтены спектрометрические погрешности, возникающие от взаимного наложения полезных сигналов селена — ртути, скандия — цинка. Предложенная методика позволяет при двухкратном расходе образцов ( 2 г) определять 23 элемента. Подобный подход к анализу нефти применен в работе [365]. [c.91]

    Если в настоящее время исследования микроэлементов нефти связаны с целым комплексом вопросов, таких как происхождение микроэлементов, формы существования их з нефтях, связь с другими компонентами 1сфти и т. д., то большая серия первых по хронологии работ была посвящена лип ь определению зольности нефтей и качественному составу золы нефти. С введением в практику изучения минеральной , асти иефти количественных методов анализа резко возросло число исследований пи составу золы нефтей. Накопление достаточного экспериментального материала позволило Хекфорду [282—284] уже в начале 30-х годов нынешнего сто-лрт я выдвинуть предложение систематизировать известные в то время микроэлементы в следующем порядке (ио их ко-личестве)1ному содержанию) сера, кислород, азот, ванадий, фосфор, калий, никель, юд, кремний, кальций, железо, маг-ни)1. натрий, алюминий, марганец, свинец, серебро, медь, титан, олово, мышьяк. [c.109]

    Для проверки этого предположения были проведены анализы на содержание металлов в свежем катализаторе и в катализаторе после длительных опытов (табл. 2). При анализе свежего катализатора практически не обна-рун ено ни ванадия, ни никеля. Однако после длительных опытов на катализаторе появляется значительное количество ванадия, особенно при переработке вакуумного газойля арланской нефти. Возрастает и содерн<апие никеля. Существенно увеличивается количество меди. После длительных опытов на вакуумном газойле смеси туймазинской и ромашкинской нефтей содержание меди увеличивается в восемь раз, а на вакуумном газойле из арланской нефти в 39 раз. Кроме того, полуколичествепный анализ показал наличие в катализаторе таких металлов, как алюминий, кремний, железо, натрий, кальций, магний и марганец в тысячных долях процента. В сотых долях процента обнаружены титан, цирконий и хром. Все это дает возможность предположить о существенном влиянии содержания металлов на катализаторе на материальный баланс крекинга. Как видно из табл. 2, уже при содержании металлов в тысячных долях процента на катализатор наблюдается значительное ухудшение показателей каталитического крекинга, когда сырьем является вакуумный газойль арланской нефти. Видимо, в некоторых случаях для значительной дезактивации катализатора достаточно содержание металлов меньше 0,01% вес., как это указывается в зарубежной литературе [9]. [c.182]


Смотреть страницы где упоминается термин Содержание ванадия, никеля и натрия в нефтях: [c.27]    [c.269]    [c.57]    [c.58]    [c.22]    [c.49]   
Смотреть главы в:

Новые нефти восточных районов СССР -> Содержание ванадия, никеля и натрия в нефтях




ПОИСК





Смотрите так же термины и статьи:

Ванадий и никель в нефтях



© 2024 chem21.info Реклама на сайте