Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Осаждение меди электролизом

    Электролиз. Медную пластинку очистить наждачной бумагой до блеска, погрузить на 3—4 мин в 15%-ный раствор азотной кислоты и после травления хорошо промыть водой под краном. Смонтировать установку так, как показано на рис. 69. В стакан-электролизер налить столько раствора для электролиза, чтобы пластинки были на /4 погружены в раствор. Опустить электроды в раствор, включить реостат на полное сопротивление. Замкнуть ключом электрическую цепь, отметить время начала опыта (включить секундомер) и уменьшить сопротивление так. чтобы напряжение было 1,2—1,4 вольта. Отметить по амперметру силу тока. Точно через 15 мин разомкнуть цепь и промыть железную пластинку водой. Осажденная медь имеет вид плотного [c.196]


    Характеристика процесса осаждения. Условия полного выделения меди. Электролиз 1 н. раствора соли меди начинается при напряжении, равном приблизительно 1,4 е. В 49 указывалось, что это напряжение является разностью нормальных потенциалов меди (0,3 в) и кислорода (1,70 е) на гладкой платине. Для практически полного осаждения достаточно, если концентрация ионов меди, остающейся в растворе, не будет превышать 10 г-ион/л. В растворе с такой концентрацией ионов меди потенциал медного электрода приближенно равен  [c.206]

    Осаждение меди электролизом Растворы [c.228]

    Для электролитического рафинирования меди использован реверсивный режим электролиза с длительностью катодного периода 39 с и плотностью тока 320 А/м . Для анодного периода эти параметры составляют 1,0 с и 290 А/м соответственно. При катодном периоде выход по току для осаждения меди составляет в среднем 98 % растворение меди в анодные периоды проходит с выходом по току 101 %. Процесс проводят в электролизерах с общей катодной поверхностью 50 м при среднем рабочем напряжении 0,34 В на один электролизер. [c.267]

    В понятие структуры входит не только размер, но и форма кристаллов. Варьируя состав электролита и условия электролиза, можно влиять не только на размер кристалла, но также на его геометрическую и кристаллографическую форму. Характерным примером изменения геометрической формы в зависимости от условий электролиза является осаждение меди. При осаждении меди из растворов сульфатов и фторборатов без добавок образуются осадки с колончатой структурой (рис. 47, а). Введение в электролит добавок желатины, фенолсульфоновой кислоты и многих других добавок приводит к образованию волокнистой структуры (рис. 47,6). [c.128]

    Характеристика процесса осаждения. Для осаждения меди можно применять аноды из различных металлов никеля, свинца, алюминия и т. д. Как и при обычном электролитическом осаждении меди, присутствие азотистой кислоты недопустимо осаждение также сильно замедляется в присутствии ионов трехвалентного железа. В связи с тем, что содержание железа в металлическом никеле почти всегда незначительно, перед электролизом к азотнокислому раствору прибавляют немного сернокислого гидразина. При этом трехвалентное железо восстанавливается и, кроме того, полностью удаляются из раствора окислы азота и азотистая кислота. [c.210]


    Осаждение меди на свинцовом катоде в начальный момент электролиза проходит при более положительном потенциале по сравнению с другими электродами. Это вызвано тем, что свинцовый катод покрывается в кислом сернокислом электролите контактно вытесненной медью, которая увеличивает его активную поверхность, в результате чего поляризация уменьшается. [c.518]

    При электролитическом методе определения меди требуется получение прозрачного раствора, свободного от мышьяка, сурьмы, олова, молибдена, золота, платиновых металлов, серебра, ртути, висмута, селена (IV) и теллура (IV), загрязняющих осадок выделяющейся меди. Кроме того, должны отсутствовать роданистоводородная кислота, присутствие кото-рЬй делает осадок меди губчатым, и соляная кислота, действующая аналогично и, кроме того, вызывающая растворение платины на аноде и переход ее на катод. Затем должны отсутствовать окислители, как, нанример, окислы азота, большие количества нитрата железа (III) или азотной кислоты, которые вначале препятствуют осаждению меди, а потом служат причиной получения высоких результатов, если в конце концов удалось добиться полноты осаждения меди Электролиз может быть проведен в азотнокислом или сернокислом растворе, и обычно его проводят в смеси обеих кислот. Если применяется одна азотная кислота, имеется опасность замедленного или неполного осаждения. Этого можно избежать, прибавляя 1 каплю 0,1 н. раствора соляной кислоты перед началом электролиза Катод и анод желательно иметь в виде открытых сетчатых платиновых цилиндров с матированной новерхностью, полученной при помощи пескоструйного аппарата (стр. 55). [c.286]

    В регенерационных ваннах с нерастворимыми анодами и 2) отбором части электролита на переработку в отделение регенерации. При электролизе в регенерационной ванне на аноде вместо растворения металла происходит выделение кислорода, а на катоде — обычный процесс осаждения меди из раствора. Таким образом, в целом процесс в регенерационной ванне выражается следующей реакцией  [c.18]

    В противном случае в стакан добавляют еще дистиллированной воды и продолжают электролиз до тех пор, пока проба на полноту осаждения меди не даст отрицательного результата. [c.66]

    Таким образом, электролиз раствора сульфата меди (II) сводится к растворению анода и осаждению меди на катоде. Концентрация сульфата меди (II) в растворе при этом остается постоянной. [c.98]

    Группа щелочных электролитов немногочисленна цианистые, пирофосфатные, тиосульфатные, роданистые и некоторые другие. Преимущественно используют цианистые электролиты благодаря их высокой рассеивающей способности и хорошему качеству получаемых покрытий недостаток — высокая токсичность. Применяют пиросульфатные электролиты, по рассеивающей способности близкие к цианистым, для получения мелкокристаллических осадков. При осаждении меди из пирофосфатных электролитов на цинковые сплавы и сталь необходимо наносить подслой из цианистого электролита меднения или резко увеличивать силу тока в начале электролиза. [c.145]

    Структура и твердость осажденной меди могут значительно меняться в зависимости от состава электролита н условий электролиза. На рис. 16 показана микроструктура меди с различной твердостью. [c.108]

    Катодное осаждение меди при электролизе раствора. При этом из раствора удаляются ионы меди в виде металлической меди, выделившейся на электроде  [c.19]

    Состав отложившегося на электроде вещества не должен изменяться под действием кислорода воздуха. При некоторых условиях электролиза (высокой плотности тока) получаются мелкокристаллические, но пористые осадки с весьма развитой поверхностью. Такие осадки легко окисляются. Например, при электролитическом осаждении меди из аммиачных растворов при высокой плотности тока металл образует на поверхности катода губчатый порошкообразный осадок, легко окисляющийся на воздухе в процессе сушки. Результаты определения в этом случае получаются повышенными. [c.319]

    Электролиз продолжают до полного выделения катиона, что определяют по обесцвечиванию раствора или капельной качественной реакцией на осаждаемый катион. При осаждении меди в раствор добавляют воду, чтобы уровень жидкости поднялся на 2—3 мм. Если на вновь погруженной части сетчатого катода не появляется цветного налета меди, значит электролиз закончен. [c.255]

    Высушенные и взвешенные электроды присоединяют к прибору для электролиза, погружают в раствор и накрывают двумя половинками часового стекла. Электролиз проводят без перемешивания при плотности тока 0,6 А/дм (при 2—2,5 А и 2,2—2,5 В). Когда раствор станет бесцветным, плотность тока уменьшают до 0,3 A/дм , половинки стекла, стержни электродов и стенки стакана промывают водой. Далее продолжают электролиз до полного выделения меди. Для проверки полноты осаждения меди катод опускают в раствор глубже на 0,5 см и наблюдают, появляется ли на чистой платине окраска меди. Если окраска катода не наблюдается, то стакан, не выключая прибора, заменяют таким же стаканом с 350 мл воды. Электролиз продолжают еще 15 мин. После этого катод вынимают из электролита, промывают над стаканом и отключают напряжение. Катод снимают, промывают в этаноле или метаноле, сушат при 110 3°С в течение 3—5 мин и после охлаждения взвешивают. Анализ длится 8 ч. [c.257]


    На полноту выделения меди оказывает вредное влияние присутствие в растворе даже незначительных следов азотистой кислоты. Это объясняется тем, что при взаимодействии меди с азотистой кислотой образуется окись азота N0, которая быстро окисляется кислородом воздуха до двуокиси. Последняя образует с водой азотную и азотистую кислоты, а НЫОз снова окисляет осажденную медь. Чтобы з далить азотистую кислоту, нужно перед электролизом тщательно прокипятить раствор. [c.206]

    Возможными примесями в бронзах являются А1, Fe, Ti, Ni. Si. Медь можно отделить предварительно электролизом [698, 699] или в виде сульфида и купфероната [719]. Электролитическое осаждение меди удобно тем, что в этом методе исключается захват бериллия. Однако при электролизе медь может выделяться неполностью. Железо, кобальт и никель также осаждаются на ртутном катоде. [c.173]

    Рассмотрим метод электролитического разделения меди и цинка. Медь и цинк занимают различные места в ряду напряжений (см. рис. 12.3). Для разделения таких металлов можно ограничиться определенными физическими условиями, а именно приложить к электродам напряжение, достаточное для количественного осаждения меди, но недостаточное для выделения цинка даже из концентрированных растворов его солей. Для электролиза Г М раствора сульфата цинка необходимо напряжение =1,7 — (—0,8) = = 2,5 В. Если приложить меньшее нагряжение, например 1,7 В, цинк выделяться не будет. Полноту выделения меди в этих условиях можно вычислить из уравнения Нернста. Напряжение разложения 1,7 В при выделении на аноде кислорода в ряду напряжений соответствует потенциалу на катоде, равному нулю, т. е. потенциалу стандартного водородного электрода. Подставляя это значение в уравнение Нернста , находим  [c.227]

    Влияние среды. Точные результаты получаются при осаждении меди в сернокислой среде в присутствии свободной азотной кислоты, действующей как деполяризатор и препятствующей выделению на катоде газообразного водорода. Но если электролиз протекает только в азотнокислой среде, то процесс электроосаждения проходит медленно и осадок выделяется неполностью. [c.321]

    Осаждение меди из аммиачных растворов приводит к менее точным результатам, так как в процессе электролиза вместе с металлической медью осаждаются окислы и гидроокись меди и других металлов. [c.321]

    Электролиз продолжают до полного обесцвечивания раствора (на что требуется около 1 ч), после чего делают пробу на полноту осаждения меди. Для этого добавляют в стакан столько дистиллированной воды (ополоснув ею часовые стекла), чтобы уровень жидкости поднялся на 2—3 мм, и снова приблизительно 10 мин продолжают электролиз. Если при этом на вновь погруженной части электрода не появляется золотистый налет меди, берут каплю исследуемого раствора на капельную пластинку (или на часовое стекло) и, добавив к ней 2—3 капли раствора ацетата натрия, действуют каплей раствора К4[Ре(СЫ)б]. Если красноватобурая муть u2[Fe( N)e] не появляется, осаждение меди можно считать практически полным. Наоборот, если образовался налет меди на вновь погруженной части катода, добавляют еще воды и продолжают электролиз до тех пор, пока проба на полноту осаждения меди не даст отрицательного результата, после чего повторяют описанную выше реакцию на Сц2+ с K4[Fe( N)e] в присутствии Ha OONa. [c.443]

    Ход определения. Навеску сплава (1 г) растворяют в смеси 100 мл разбавленной (1 4) H2SO4 с 1 мл разбавленной (1 1) HN0.1. По окончании растворения навески к раствору прибавляют несколько миллилитров 10%-ного раствора сульфата гидразина (N2H4-H2SO4) для восстановления азотистой кислоты и окислов азота, мешающих осаждению меди на катоде. Разбавляют раствор до 150 мл, нагревают до 60—65° С и подвергают внутреннему электролизу. Для этого опускают в раствор электродную пару, состоящую из цинкового анода и платинового сетчатого катода , собранную, как показано на рис. 63. Предварительно тщательно зачищают контакты анода и катода, поверхность цинкового анода и хорошо закрепляют их в соответствующих клеммах. [c.451]

    Катод и анод закрепляют в электродержателях, присоединяя к источнику тока соответственно полюсам. В электролизер помещают анализируемый раствор, добавляют 1 мл 2 Ai раствора HNO3, погружают в него электроды и разбавляют исследуемый раствор таким количеством дистиллированной воды, чтобы часть катода (5—7 мм) выступала над поверхностью раствора. Это необходимо для проверки в дальнейшем полноты осаждения меди. Электроды не должны касаться друг друга, а также дна и стенок стакана. Включают магнитную мешалку и регулируют перемешивание раствора. Включают ток и проводят электролиз 35—40 мин, контролируя напряжение (2—2,5 В) или ток (1— 0,5 А) по прибору. По мере осаждения меди катод окрашивается в красный цвет, а раствор постепенно обесцвечивается. Затем для проверки полноты осаждения меди приливают в электролизер 10—15 мл дистиллированной воды. Если через 10 мин на вновь погруженной поверхности катода не наблюдается дальнейшего выделения меди, электролиз заканчивают. В противном случае электролиз продолжают еще 10—15 мин. [c.182]

    Определение цинка на платиновом катоде, предварительно покрытом медью. После отделения меди электролизом, как описано выще, раствор переносят в мерную колбу вместимостью 250 мл и доливают до метки дистиллированную воду. Отбирают 50 мл раствора в электролизер, добавляют 25%-ный раствор NaOH в количестве, необходимом для растворения гидроксида цинка, и еще 5 мл избытка щелочи. Осаждение проводят на взвещенном омедненном платиновом катоде, проверяют полноту осаждения и промывают электроды, как описано выще. Катод ополаскивают этиловым спиртом, высушивают при 110°С в сушильном шкафу, охлаждают в эксикаторе и взвешивают на аналитических весах. Содержание цинка вычисляют по формуле  [c.183]

    Промывные воды следует пропускать через отстойники с железным скрапом для осаждения меди и драгоценных металлов, сточные воды из цехов — через ионообменные смолы. Для цеха электролиза Л. АддИкс дает норму потерь меди 0,04— [c.206]

    Более поздние шаги по извлечению меди из руд электролизом относятся к периоду 1886—1905 гг. Фирма Сименс — Гальске запатентовала способ выщелачивания медного колчедана (СигЗ) в растворах сульфата окиси железа с последующим электролитическим осаждением меди. [c.219]

    В дехе устанавливают большое количество ванн. Электролизеры электрически соединены в серии. Электролит циркулирует через все ванны и проходит через подогревающее устройство. В специальных матричных ваннах получают тонкие листы чистой меди, которые используют затем в качестве катодов для получения меди. В матричные ванны вешают катоды-матрицы из прокатанной тонкой меди, алюминия или нержавеющей стали. Матрицы перед осаждением меди смазывают маслом или керосином, а кромки матриц защищают специальными накладками. При достижении толщины осадка меди на матрице 0,4—0,7 мм его сдирают и готовят из него катоды для основного электролиза. [c.305]

    Медь в составе контактной массы выполняет роль катализатора. Чистую медь получают электролизом медного купороса Си304. Для прямого синтеза применяется медь двух марок — и М1 с содержанием меди 99,95—99,9%. Суммарное содержание примесей (В1, ЗЬ, Аб, Ре, N1, РЬ, 3 и др.) не должно превышать 0,05—0,1%. Для обеспечения высокой активности контактной массы необходимо применять медные порошки с хорошо развитой поверхностью. Хорошие результаты при прямом синтезе получаются и при использовании мелкодисперсной меди, приготовленной механическим распылением медного порошка или осаждением меди из медных солей. [c.36]

    Раствор нагревают на слабом пламени горелки (до 50— 70 °С) для ускорения электролиза. Проводят электролиз до полного обесцвечивания раствора (примерно 1 ч), после чего проводят пробу на полноту осаждения меди. Для этого добавляют в стакан воду, чтобы уровень жидкости поднялся на 2 — 3 мм и снова продолжают электролиз - 10 мин. Если после этого на вновь погруженной части элекхрода не появится золотистый налет меди, следует взять каплю анализируемого раствора на капельную пластинку, добавить к ней 1—2 капли 10 %-ного раствора ацетата натрия и каплю раствора ферроцианида калия К4[Ре(СЫ)б]. Если не появится красновато-бурая муть фер-роцианида меди, то выделние меди можно считать законченным. Если же на вновь погруженной части электрода образуется налет меди, то необходимо добавить воды и продолжить электролиз до получения отрицательной реакции на полноту осаждения меди. [c.256]

    Хлорная кислота в электрохимическом анализе. Гендриксон описал осаждение меди, серебра и кадмия из разбавленных растворов хлорной кислоты электрохимическим путем. Были опубликованы работы по осаждению кобальта и никеля , железа и свинца . Норвиц привел общий обзор этой области применения НСЮ. Сообщалось , что анион перхлората в меньшей степени восстанавливался, чем сульфат-ион, и во время электролиза не-давал побочных реакций. [c.126]

    Электролизом водных растворов можно отделить галлий от многих металлов Поддерживая катодный потенциал меньшим потенциала выделения галлия, можно выделить из раствора более электроположительные элементы, оставляя галлий и другие электроотрицательные элементы в растворе. Если затем поднять потенциал катода до значения потенциала выделения галлия, то он будет осажден на катоде и таким образом отделен от более электроотрицательных элементов Так разделяют, например, медь (100—250 мг) и галлий (0,5—20 мг) [146] в азотнокислом растворе (pH 1,1, потенциал—0,3 в, 40—50° С). Во всех случаях получается плотный спектральночистый мелкокристаллические осадок меди. Разделение может быть проведено выделением меди электролизом из сульфатных растворов, не содержащих С1 июна при напряжении 2—2,2 в [993]. [c.69]

    Электролиз продолжается около 1 ч (до полного обесцвечивания раствора). Для проверки полноты осаждения обмойте часовые стекла дистиллированной водой, долейте в стакан 20—25 мл дистиллированной воды и продолжайте электролиз еще 10 мин. Если на свежепогруженной части катода не будет наблюдаться нового выделения меди, электролиз можно считать законченным. [c.323]


Смотреть страницы где упоминается термин Осаждение меди электролизом: [c.200]    [c.187]    [c.66]    [c.209]    [c.78]    [c.231]    [c.101]    [c.57]    [c.142]    [c.105]   
Смотреть главы в:

Электролиз в гидрометаллургии -> Осаждение меди электролизом




ПОИСК







© 2025 chem21.info Реклама на сайте