Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы исследования устойчивости решения

    Строгая постановка задачи об устойчивости системы и метод ее решения впервые были даны А. М. Ляпуновым [11]. Его работы стали основой исследования устойчивости технических систем, в том числе и химических. Существенные результаты в исследовании устойчивости химических систем получены в работах [12— 14]. Если математическая модель кристаллизатора при нестационарном режиме состоит из линейных обыкновенных дифференциальных уравнений с постоянными или переменными коэффициентами, то возможно применение хорошо разработанных методов анализа устойчивости линейных систем автоматического регулирования. Для устойчивости линейной системы k-то порядка необходимо и достаточно, чтобы все k корней ее характеристического уравнения [c.330]


    Методы исследования устойчивости решения [c.163]

    Практически одновременно с привлечением ЭВМ к решению избыточных систем линейных уравнений для уменьшения влияния случайных ошибок ЭВМ были использованы для теоретической оценки ошибок анализа. Был предложен вариационный метод исследования устойчивости решения систем линейных уравнений с помощью численного варьирования на ЭВМ оптических плотностей и коэффициентов поглощения [12, 13]. Общим недостатком подобных методов является необходимость в очень большом объеме вычислений. [c.257]

    Доказательство Ляпунова существования устойчивости в малом является неконструктивным, так как оно не содержит алгоритма построения функции V (х). Поэтому для решения прикладных задач разработаны методы исследования устойчивости, основанные на более конкретном выборе функции Ляпунова. [c.77]

    Известно, что аналитические и вычислительные методы являются полезными средствами для выяснения механизмов колебательных химических реакций (см., например, [1, 2]). Среди этих методов — аналитические методы теории возмущений, такие, как анализ устойчивости по линейному приближению и теория бифуркаций (см., например, [3]), которые используются для исследования топологии пространства решений, а также численные методы, в том числе моделирование и компьютерное моделирование. Недавно в качестве дополнительного средства для изучения моделей колебательных реакций был предложен новый метод расчета, известный как анализ чувствительности [4—6]. Анализ чувствительности обещает стать быстрым недорогостоящим способом изучения зависимости моделирований от параметров, имеющихся в модельных уравнениях. Это, по сути, численный метод исследования топологии решения в пространстве параметров. [c.422]

    Система уравнений (6.49) и (6.50) позволяет найти в и вд Если эти уравнения не имеют положительных вещественных решений для и Ад, то колебания в исследуемой системе отсутствуют. Если колебания с параметрами Шд и являются устойчивыми, то в системе устанавливаются автоколебания. В прикладных задачах устойчивость колебаний может быть проверена по физической картине процессов, протекающих в системе, или могут быть использованы методы исследования устойчивости периодических решений нелинейных дифференциальных уравнений (11. [c.200]

    Методы исследования устойчивости ДС развиты в работах Осипова и Кернера [4, 16] на примере образования страт в плазме. Фактически используется метод Ляпунова, т. е. определяется временная зависимость малых отклонений от стационарных решений х г) и у (г). Малые отклонения 8х г, f), by г, t) (девиации) ищутся в форме bx r,t)= r)eP ,by r,t)=(f r)eP . Устойчивыми являются решения, где все характеристические числа р имеют отрицательную вещественную часть. Для яр (г) и ф (г) возникает система однородных дифференциальных уравнений, собственными значениями которой являются характеристические числа р. Таким образом, в каждой задаче имеется спектр р, содержащий бесконечное число значений. В этом отличие от устойчивости точечной модели, где р — собственные значения алгебраической задачи и число их конечно. [c.235]


    Отметим, что предложенный метод решения разностной схемы по своим принципам аналогичен явным разностным схемам. По данной причине методы исследования устойчивости предложенного метода полностью совпадают с методами исследования устойчивости явных разностных схем. Более подробно такую информацию можно найти в работах [96, 97.  [c.527]

    Выше показано, что математические описания химико-технологических процессов представляют собой системы алгебраических или дифференциальных уравнений. Здесь приведем описание некоторых численных методов, позволяющих выполнять расчеты таких систем. Далее рассмотрим существенные для математического моделирования методы исследования таких систем определение чувствительности решения к величинам параметров и, если число возможных решений больше одного, — определение устойчивого решения и па его основе — устойчивого режима работы химико-технологического процесса. [c.141]

    Кроме ошибок аппроксимации, существует другой источник ошибок численного решения, связанный с погрешностью вычислений. В зависимости от вычислительного алгоритма могут уменьшаться и возрастать ошибки округления. В случае возрастания говорят, что вычислительный метод неустойчив, в случае убывания — устойчив. Для решения задач используют устойчивые методы. Один и тот же алгоритм может быть устойчив при выполнении некоторых условий и неустойчив при их нарушении. Условие неустойчивости является внутренним свойством разностной схемы и не связано с исходной дифференциальной задачей. Исследование устойчивости обычно проводится для линейных задач с постоянными коэффициентами, и результаты исследования, полученные для линейных систем, переносят на нелинейные уравнения газовой динамики, но при этом надо иметь в виду, что [c.271]

    Методы анализа устойчивости систем. Строгая и завершенная постановка задачи об устойчивости движения и два метода ее решения впервые даны А. М. Ляпуновым . Его работы стали основой исследования устойчивости технических систем, в том числе и химических. [c.506]

    В результате совместных работ сотрудников Института катализа, Института математики и Вычислительного центра Сибирского отделения АН СССР успешно преодолены основные трудности, возникающие нри качественном и количественном исследовании моделей процессов, описываемых обыкновенными дифференциальными уравнениями и дифференциальными уравнениями в частных производных. На основе разработанных здесь качественных методов значительно продвинулось вперед понимание поведения систем в целом. Методы теории устойчивости позволили изучать стационарные и нестационарные режимы. Разработанные численные схемы и алгоритмы для решения дифференциальных уравнений в частных производных расширили круг математических моделей, используемых для научно обоснованного проектирования промышленных аппаратов. [c.3]

    К настоящему времени полнее всего разработаны основы математического моделирования химических реакторов с неподвижным слоем катализатора, работающих в стационарном режиме. Прп решении таких задач, как моделирование процессов, протекающих на катализаторе с изменяющейся во времени активностью, ведение процесса в искусственно создаваемых нестационарных условиях, оптимальный пуск н остановка реактора, исследование устойчивости химических процессов, разработка системы автоматического управления и другие, важно знать динамические свойства разрабатываемого контактного аппарата. Для этого необходимо построить и исследовать математическую модель протекающего в реакторе нестационарного процесса [И]. В настоящей работе, посвященной разработке реакторов с неподвижным слоем катализатора на основе методов математического моделирования, вопросы, связанные с нестационарными процессами, будут излагаться наиболее подробно. [c.6]

    При применении методов линейного программирования важную роль играет анализ устойчивости решений. Под этим термином понимают исследование влияния изменений коэффициентов целевой функции и коэффициентов, входящих в состав ограничений, на оптимальное решение. [c.196]

    Хотя и имеется принципиальная возможность использовать для определения состава и устойчивости комплексов любое, функционально связанное с комплексообразованием свойство металла, лиганда или системы в целом, потенциометрия и спектрофотометрия, остаются основными методами, и поэтому они в книге рассмотрены детально. Однако нередко бывает целесообразно по тем или иным причинам привлечь другие методы, так как часто данные о составе и устойчивости комплексов можно получить попутно с решением других задач именно поэтому авторы рассмотрели возможности многих других методов. Здесь, вслед за авторами, хотелось бы подчеркнуть, что, как правило, особенно при исследовании сложных систем, необходимо привлекать несколько методов исследования. [c.5]


    Потенциометрический метод — также один из наиболее эффективных и наиболее важных методов исследования равновесий в растворах и расплавах. Из данных по ЭДС рассчитывают константы диссоциации кислот и оснований, константы устойчивости координационных соединений, ПР малорастворимых солей и другие константы равновесия. В настоящем разделе кратко рассмотрен вопрос об определении pH, поскольку рН-мет-рические измерения часто используются для решения различных задач и имеют, таким образом, универсальный характер. [c.176]

    Следует отметить, что при решении задач автоматического регулирования, связанных с выбором оптимальной структуры системы автоматического регулирования, исследованием устойчивости или качества регулирования, приходится прибегать к сложным и чаще всего — приближенным методам расчетов, требующих хорошего знания теории автоматического регулирования. [c.248]

    Для исследования устойчивости систем, которые не могут быть линеаризованы разложением по степеням отклонений обобщенных координат, имеются другие теоремы Ляпунова, они составляют основу решения задач устойчивости вторым методом Ляпунова. [c.108]

    В общем виде задача синтеза заключается в таком вы- боре структуры системы, параметров и конструкции устройств, чтобы обеспечивались устойчивость, требуемые показатели переходных процессов и заданная точность регулирования. Один из возможных способов решения этой задачи состоит в проведении серии расчетов различных по структуре и параметрам систем с использованием описанных выше методов анализа устойчивости и качества регулирования. Однако этот путь приводит к трудоемким расчетам и может оказаться недостаточно эффективным, так как выбор расчетных вариантов будет в какой-то степени произвольным. Если структура системы известна, то параметры входящих в нее устройств могут быть выбраны с помощью рассмотренных в параграфе 5.4 методов оценки качества регулирования по степени устойчивости и колебательности или в результате исследования корневых годографов (см. параграф 5.5). [c.161]

    Пока проведено только несколько исследований устойчивости естественной конвекции холодной воды около вертикальной поверхности и получены данные о росте возмущений в случае постоянной температуры поверхности и постоянной плотности теплового потока. В работе [129] рассматривалось автомодельное (R = 0) течение чистой и соленой воды при постоянной плотности теплового потока от поверхности. Решение получено для нескольких значений показателя степени q s,p) в уравнении для определения плотности жидкости (9.1.1). Представлены также результаты расчетов и для течения около изотермической поверхности при R = 0. Определены [65] условия нейтральной устойчивости для течения около изотермической ловерхности при R = —1/2, 1, +2, 4. В обеих работах использовались методы линейной теории устойчивости, изложенные в разд. 11.1 и 11.2. [c.149]

    Несмотря на то что между результатами этой работы и работ других авторов имеются лишь незначительные расхождения, относящиеся к обмену цезия и гидролитической устойчивости, решение этих вопросов может быть достигнуто лишь при параллельном использовании различных методов исследования. Для уточнения условий приготовления фосфата циркония полезно было бы тщательно исследовать влияние старения осадка как при длительном его стоянии с маточным раствором, так и при кипячении с фосфорной кислотой. При длительном контакте фосфата циркония с горячими растворами наблюдаются фазовые превращения, которые, по-видимому, приводят к потере ионообменных свойств (стр. 141). [c.137]

    Исследование тепловыделения и теплообмена в химических реакторах имеет весьма важное значение для определения устойчивости режимов их работы. Строгая и завершенная постановка задачи об устойчивости системы и методы ее решения впервые были разработаны А. М. Ляпуновым. Работы А. М. Ляпунова явились основой для проведения исследования устойчивости технических систем, в том числе и химических. [c.172]

    Устойчивость однородного псевдоожиженного слоя исследовалась во многих работах [7, 1968 19, с. 13, 21, 1965, т. 21 23 /24 56 57]. Методология исследования устойчивости, использованная в этих работах, является общей для всех работ и заключается в использовании методов линейной гидродинамической теории устойчивости [66]. Различия между этими работами заключаются главным образом в выборе исходной системы уравнений гидромеханики псевдоожиженного слоя, на которых базируется анализ устойчивости однородного псевдоожиженного слоя. Несколько иной подход к анализу устойчивости псевдоожиженного слоя применялся в работах [67, с. 134 68], в которых исследовалась устойчивость некоторого нестационарного решения уравнений гидромеханики псевдоожиженного слоя. Однако это решение уравнений гидромеханики имеет, по нашему мнению, искусственный характер. В настоящем разделе исследуется устойчивость [c.78]

    Общий метод анализа устойчивости равновесных или стационарных состояний был создан А. М. Ляпуновым [22]. Идея этого метода состоит в следующем. Для исследования устойчивости какого-либо стационарного состояния необходимо выяснить, приближается ли с течением времени к данному состоянию рассматриваемая система, будучи переведена в какое-либо другое состояние, незначительно отличающееся от первого. Ответить на этот вопрос можно, решив уравнения, описывающие поведение системы в нестационарных условиях, т. е., если мы имеем дело с процессом в химическом реакторе, — систему нестационарных уравнений материального и теплового баланса. Мы знаем, что эта задача чрезвычайно трудна и таким путем было бы очень сложно исследовать устойчивость даже какого-либо частного процесса и совершенно невозможно — выявить общие закономерности. Задачу, однако, можно упростить, используя тот факт, что для анализа устойчивости достаточно исследовать малые отклонения от стационарного состояния. Поэтому уравнения, описывающие нестационарный процесс, можно упростить, приближенно представив их правые части линейными функциями отклонений ог стационарного состояния. В результате мы получаем простую систему уравнений, поддающуюся аналитическому решению, исследование которой и дает ответ на вопрос об устойчивости стационарного режима процесса. [c.288]

    В книге рассматриваются спектроскопические методы исследования состава, устойчивости и строения комплексных соединений. Дается обзор приложений спектрофотометрии, инфракрасной спектроскопии и ядерного магнитного резонанса к решению проблем координационной химии. [c.2]

    Приведенные примеры свидетельствуют об эффективности сочетания методов теории теплового режима горения с аэродинамическим расчетом, проведенным на основе решения уравнений переноса без источников. Как и в ряде других случаев,, сочетание различных методов исследования значительно расширяет круг рассматриваемых вопросов и позволяет более полно отразить физическую сущность процесса. Обобщение аэродинамической теории на случай соизмеримых скоростей реакции и диффузии делает возможным исследование не только самого процесса стационарного горения, но его устойчивости. Эти вопросы приобретают исключительно большое значение в связи с постоянной тенденцией к дальнейшей интенсификации процесса горен в различных технических устройствах. [c.23]

    Применение этих методов особенно удобно тогда, когда титруемый раствор окрашен, т. е. когда работать с индикаторами невозможно, а также при титровании смесей, когда на кривой титрования появляется больше одной точки эквивалентности. Существенны преимущества потенциометрических методов и при титровании разбавленных растворов (обычно до 0,001 н.), когда эквивалентный участок кривой титрования узок и применение индикаторов в отдельных случаях связанр со значительными ошибками. Потенциометрические методы используют широко не только для анализа, но и как метод исследования при решении разнообразных химических проблем (определение констант протолиза кислот и оснований, констант устойчивости комплексов и др.). [c.328]

    Дело в том, что, как правило, эти частные решения представляют собой асимптотики широкого класса других решений, отвечающих другим начальным условиям. В этом случае значение точных частных решений возрастает в сильнейшей степени. И эта часть вопроса отражена в заглавии книги, в словах промежуточные асимптотики . Значение решений как асимптотик зависит от их устойчивости. Вопросы устойчивости и поведения решений при малых возмущениях также рассматриваются в этой книге в частности, излагается предложенный в совместной работе Г. И. Баренблатта и моей простой метод исследования устойчивости инвариантных решений. [c.8]

    Устойчивость колонн синтеза аммиака с внутренним теплообменом. Число стационарных состояний и их свойства можно найти по методу, примененному для анализа стационарных режимов в зерне и в слое катализатора. Аналогичная задача об устойчивости колонн синтеза решена В. И. Мукосеем Он провел численный анализ системы уравнений знаковой модели колонны синтеза и построил зависимость конечной температуры реакционной смеси от начальной (рис. ХУ-35). Как видно из рисунка, имеются области начальных температур, для которых суш,ествует одна или три температуры на выходе из колонны и соответственно одно или три стационарных решения (рис. ХУ-Зб). Верхняя кривая отвечает норхмальному режиму (/ к), средняя —неустойчивому, а >лижняя кривая (Тд ) не представляет практического интереса. Анализ устойчивости колонн синтеза аммиака методом исследования параметрической чувствительности выполнил В. С. Бесков [c.520]

    Теория квадратичных методов минимизации, изложенная в начале этой главы, основана на исследовании задачи о минимуме квадратичной функции. Возможность применения этих методов к минимизации произвольных, т. е. неквадратичных функций связана с тем, что при выполнении известных условий неквадратичную функцию в некоторой окрестности точки минимума можно с определенной точностью аппроксимировать квадратичной функцией. Некоторые свойства квадратичных методов минимизации — устойчивость, идентичность генерируемых последовательностей л —установлены, но существу, для неквадратичных минимизируемых функций [67 72 11, с. 76— 81 ]. Окончательное решение вопроса о возможности применения квадратичных методов к минимизации неквадратичных функций определяется исследованием сходимости рассматриваемых методов, так как свойство конечности алгоритма (достижение минимума за конечное число итераций) для неквадратичных минимизируемых функций, вообще говоря, не выполняется. Для многих, наиболее часто применяемых квадратичных методов минимизации не только доказано свойство сходимости, но и получены оценки скорости сходимости, которая оказывается сверхлинейной [154, 155]. В то же время метод наиекорейшего спуска, например, характеризуется, в общем, более слабой — линейной скоростью сходимости. Практическое подтверждение этих теоретических соображений основывается на результатах решения тестовых задач различными методами и последующей их сравнительной оценке. [c.98]

    При решении задач динамики и регулировгния гидро- и пневмосистем наибольшее применение получили методы фазовой плоскости и гармонической линеаризации, поэтому в основном будут рассмотрены эти два метода. Прямой метод Ляпунова пока использовали при исследовании устойчивости определенного класса гидроприводов [401. [c.175]

    Вакитани [156] распространил метод Гастера [46] на исследование устойчивости непараллельного течения при естественной конвекции в плоском факеле. В качестве первого шага сделано предположение о том, что при х = Хо известно начальное возмущение и после этого ищется решение при л > Хо- Затем вводятся новые координаты [c.113]

    Результаты изучения пластического состояния углей, формирования напряженного состояния кокса и основных явлений промышленного процесса коксования послужили основой для решения поставленных задач и стали возможными благодаря разработке сотрудниками ВУХИНа новых методов исследования прочности углей, кокса при нагреве в различных газовых средах газопроницаемости пластической массы углей производственного измельчения вторичного пиролиза паро(азовых продуктов, их термической устойчивости и динамики отложения пироуглерода в порах и на поверхности кокса определения п ютности и характера распределения угольной загрузки в полномасштабной модели печной камеры определения в производственных условиях давления на стены печных камер в процессе их заполнения и коксования угольной загрузки изучения условий коксования в полузаводских печах новой конструкции, максимально моделирующих промышленный процесс изучения процесса мягкой механической обработки и сухого тушения кокса создания высокопроизводительных нромы1иленнь[х и гюлупромышленных агрегатов для подготовки угольных шихт наиболее приемлемь(ми и эффективными мегодами. [c.372]

    В работе, выполненной авторами [1—3], дано обш,ее решение поставленной задачи при помощи аппарата современной статистической теории жидкостей, основанного на изучении коррелятивных функций системы. Термодинамические методы исследования и модельные представления о структуре и свойствах раствора не использовались. В результате развитой нами общей теории получено уравнение граничной поверхности устойчивости однородной многокомпонентной системы в ее р—Т — п пространстве, выраженной в терминах межмолекулярных сил и радиальных функций распределения. Основой теории послужили исследования одного из авторов по теории устойчивости однокомпонентной жидкой или газовой системы [4,5], которые удалось обобщить на многокомпонентный случай. [c.48]


Смотреть страницы где упоминается термин Методы исследования устойчивости решения: [c.53]    [c.162]    [c.164]    [c.325]    [c.84]    [c.103]    [c.81]    [c.9]    [c.444]    [c.9]    [c.128]   
Смотреть главы в:

Моделирование физико-химических процессов нефтепереработки и нефтехимии -> Методы исследования устойчивости решения




ПОИСК





Смотрите так же термины и статьи:

Устойчивость решений



© 2025 chem21.info Реклама на сайте