Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массообмен движущая сила

    Движущая сила массопередачи, т. е. разность у—Ур) или Хр—х), постоянно меняется, поэтому для расчетов необходимо определить среднюю движущую силу процесса, которая зависит от типа массообменного процесса. [c.53]

    При п=1 модифицированные формулы аддитивности (4.10) и (4.12) совпадают с выражениями (4.6). Неравенства (4.9) и (4.11) выполняются, когда (и-1)/и 1, либо при условиях 1си-Сх 1/с1 1 или 1 2 —Сг /с2 1. Первое неравенство имеет место при и 1, т. е. в случае, когда коэффициент очень мало зависит от концентрации. Вторые неравенства, в свою очередь, выполняются в случае, когда массообмен протекает вблизи равновесия при малой движущей силе либо когда один из частных коэффициентов массоотдачи много больще другого. Формулы аддитивности фазовых сопротивлений в форме (4.6), (4.7) или (4.10), (4.12) применяются обычно, когда частные коэффициенты массопередачи не зависят от концентрации. Это имеет место при наличии тонких диффузионных пограничных слоев на границе раздела фаз. В работах [222] и [225] приведены результаты экспериментов в пропеллерной мешалке с плоской границей фаз. [c.172]


    В немеханических колоннах при большой высоте может происходить слияние диспергированной фазы (распылительные колонны) кроме того, установлено, что при низких концентрациях, которые получаются на некоторой высоте колонны, массообмен происходит особенно медленно из-за плохой турбулентности и небольшой движущей силы. При определении действительной высоты эти обстоятельства приводят к ее завышению. В механических колоннах, благодаря лучшим кинетическим условиям, массообмен можно удержать на высоком уровне. Оценка этих колонн вообще выше, чем немеханических, но при большой высоте она снижается вследствие конструктивных затруднений. Если их нет, то можно применить пульсацию и в колоннах с большой высотой. [c.374]

    Гидродинамическая обстановка на тарелке (или слое насадки) суш ественно влияет на эффективность массопереноса, на степень достижения равновесных значений концентраций фаз. Чем ниже эффективность тарелки, тем, очевидно, необходимо большее время пребывания фаз в контакте или большая поверхность контакта. При движении жидкости вдоль контактного элемента наблюдается неравномерность массопереноса, обусловленная различными градиентами концентраций (движущей силы), различной высотой слоя жидкости, обратным забросом фаз, различной гидродинамической обстановкой и т. д. Поэтому целесообразно воспользоваться для оценки эффективности массопереноса характеристиками локальных объемов массообменного пространства, в пределах которых может быть принята однородная гидродинамическая структура потоков, и определять эффективность контактной ступени интегрально. Такой характеристикой эффективности массопереноса является локальный КПД в форме уравнения (4.59), записанный для многокомпонентной смеси в матричном виде как [1, 45, 46] [c.131]

    Увеличение нагрузок колонны приводит к турбулизации стекающей по насадке жидкости, улучшая массообмен. При этом возрастающая скорость пара повышает разделяющую способность насадки. Так как удерживающая способность насадки быстро возрастает, время контакта фаз увеличивается. За счет вихреобразования увеличивается поверхность контакта фаз. Движущая сила процесса также возрас- [c.408]

    Для технологических операторов ХТС с распределенными параметрами, к которым относятся аппараты, где протекают противо-точные массообменные процессы, нахождение элементов матриц, преобразования практически сводится к свертке зонной ячеечной математической модели по пространственной координате и ее линеаризации в некотором диапазоне изменения параметров вектора входных потоков. Подобная свертка математической модели применяется также в тех случаях, когда химико-технологические нро-цессы рассчитывают на основе средних движущих сил или равновесных зависимостей. [c.89]


    С момента нанесения возмущения t=0 начинается массообмен между зонами в поперечном направлении по всей длине аппарата с движущей силой, равной разности концентраций растворенного вещества в проточной и застойной зоне (2, I)—63(2, t). [c.255]

    Перечислим движущие силы, связанные с массообменом  [c.77]

    В этом случае глубина осушки газа при работе слоя до проскока влаги будет соответствовать точке росы газа по воде ниже —40° С. В тех случаях, когда необходимо осушать газ до точки росы заметно ниже —40° С (например па заводах сжижения), рекомендуется влагоемкость адсорбентов принимать несколько меньшей приведенной. Это связано с тем, что массообмен между газом и адсорбентом в концевой части слоя ухудшается из-за уменьшения движущей силы процесса адсорбции. [c.245]

    Другой причиной улучшения показателей работы массообменных аппаратов в нестационарном режиме является увеличение движущей силы. Суть этого эффекта для насадочных и тарельчатых аппаратов состоит в том, что при циклическом сливе жидкости со ступени (полном или частичном) и относительно быс фой замене ее свежей жидкостью режим на этой ступени приближается к режиму идеального вытеснения, обладающему максимально возможной движущей силой. Наиболее интенсивным режим работы аппарата будет тогда, когда время цикла примерно равно среднему времени пребывания жидкости на ступени. [c.303]

    I. Гидравлические процессы связаны с перемещением жидких и газообразных материалов. К ним относятся перекачивание, транспортирование, хранение, дозирование. Гидравлические процессы являются также основой для проведения ряда других процессов и их интенсификации (теплообменных, массообменных и др.). Движущей силой гидравлических проце-сов является разность давлений. Скорость протекания процесса определяется законами гидродинамики. [c.13]

    III. Массообменные процессы связаны с переходом вещества из одной фазы в другую в результате диффузии. Поэтому их называют также диффузионными. К этому классу относятся перегонка, ректификация, абсорбция и десорбция, адсорбция, экстракция, сушка, кристаллизация и др. Движущей силой массообменных процессов является разность концентраций. Скорость процесса определяется законами массопередачи. [c.13]

    Вдоль поверхности контакта фаз движущая сила обычно изменяется, поэтому при расчетах массообменных процессов необходимо пользоваться средним значением движущей силы. На рис. ХП-2 дана схема, поясняющая изменение концентраций и движущей силы вдоль поверхности контакта фаз. [c.224]

    Если на полке пенного аппарата режим перемешивания жидкости близок к полному смешению, то движущая сила теплопередачи (по жидкой фазе) эквивалентна конечной температуре пены, постоянной во всем объеме аппарата при массообмене же (например, при абсорбции) движущую силу полагают эквивалентной конечной концентрации поглощаемого компонента в жидкости за вычетом равновесной концентрации [146]. [c.95]

    Каждая из независимых переменных коэффициент массопередачи (константа скорости процесса) К (м/ч), поверхность соприкосновения фаз Р (м ) и движущая сила процесса АС (кг/м ) — является сложной функцией ряда параметров технологического режима, типа и конструкции массообменного аппарата. [c.122]

    ДВИЖУЩАЯ СИЛА МАССООБМЕННОГО ПРОЦЕССА [c.141]

    При использовании опытных значений коэффициентов массопередачи для расчета массообменных аппаратов следует учитывать, каким методом была определена движущая сила процесса, и использовать тот метод, который был применен для расчета К. [c.144]

    Общие кинетические уравнения (VII. 22) и (VII. 23) в каждом конкретном случае принимают определенный, иногда сложный, вид в соответствии с характером движущей силы АС, способами выражения поверхности контакта фаз Р, факторами, влияющими на коэффициент скорости процесса к. Эти уравнения служат основой расчета реакторов и массообменных аппаратов. Для этого необходимо в первую очередь знать численное значение коэффициента скорости процесса к — наиболее характерного показателя эффективности работы аппаратов. Основная сложность разнохарактерного влияния многих независимых переменных на скорость процесса учитывается именно параметром к. [c.158]

    Тепло- и массообмен между газом и распыленной жидкостью отличаются высокой интенсивностью, обусловленной развитой поверхностью фаз, большими значениями движущих сил и коэффициентов тепло- и массопереноса. Процесс можно вести непрерывно и с большой скоростью, поэтому сушка распылением по сравнению с другими способами сушки позволяет сэкономить время, средства и рабочую силу. Это подтверждается приведенными в табл. 3.1 данными по сравнительной стоимости системы сушки каолиновой глины. [c.147]


    В аппаратуре, используемой для проведения массообменных процессов, равновесные концентрации распределяемого вещества никогда не достигаются. Действительные концентрации распределяемого вещества, или рабочие концентрации, всегда отличаются от равновесных. Разность между этими концентрациями, характеризующая степень отклонения от равновесия, и представляет собой движущую силу массообменных процессов. [c.251]

    Движущая сила массообменных процессов [c.253]

    На рис. 11-4 показаны возможные варианты выражения движущей силы массообменных процессов при различных направлениях перехода распределяемого вещества. Поскольку концентрации распределяемого вещества можно выражать любыми способами, важно подчеркнуть, что во всех случаях движущей силой процесса будет разность между рабочей и равновесной концентрациями, взятая с положительным знаком. [c.253]

    Движущей силой массообменных процессов является разность концентраций или градиент концентраций между фактической концентрацией компонента в данной фазе и равновесной с другой фазой, а скорость процесса определяется законами массопередачи. [c.7]

    Движущей силой массообменных процессов является разность концентраций (градиент концентраций) фактической в данной фазе С и равновесной с фактической в другой фазе 1. Процесс протекает в направлении той фазы, в которой концентрация компонента меньше, чем это следует из условия равновесия (рис. 1-1). [c.20]

    Массообмен — диффузионный процесс переноса распределенного вещества из одной фазы в другую через разделяющую их границу или внутри одной фазы в неоднородном поле концентраций. Движущей силой служат градиенты концентраций, парциальных давлений, химических потенциалов или температур (при термодиффузии). [c.24]

    С другой стороны, скорость массообменного процесса пропорциональна движущей силе процесса Д и обратно пропорциональна сопротивлению массопереноса Я. [c.30]

    Значение движущей силы процесса определяется как разность концентраций Дув отдельных участках массообменного аппарата она равна при массопередаче из фазы G в фазу L (см. рис. 1-7, а) у = у — у , а при массопередаче из фазы L в фазу G у = Ур — у (см. рис. 1-7, б). [c.36]

    Из графиков видно, что величины движущей силы по фазам G и L для разных сечений аппарата будут изменяться, поэтому для аппарата в целом необходимо определять среднюю движущую силу массообменного процесса Д у,.р и Д [c.36]

    V 5. Средняя движущая сила массообменного процесса [c.20]

    Рассматривая процесс сушки как диффузионный (массообменный), движущую силу сушки можно выразит , разностью влагосодержаний воздуха — насыщенного лгнас (в пограничном слое) и ненасыщенного (в воздушном потоке)  [c.419]

    Разработку системы хронопрострапственных метрик сайта технологических процессов целесообразно осуществить на базе общепринятой классификации химико-технологических процессов. В основу этой классификации положена общность кинетических закономерностей, целенаправленность и способы осуществления процессов [269, 399]. В рамках этой классификации все процессы разбиты на пять классов гидромеханические, тепловые, массообменные механо-технологические, химические. Воздействие акустических колебаний на отдельные процессы этих классов может иметь разную степень результативности. В энциклопедии [429] отмечаются следующие уровни воздействия стимулирующие (акустическое воздействие является движущей силой процесса, например, акустическое диспергирование) интенсифицирующие (воздействие выступает как фактор, ускоряющий течение процесса, например, массообмен в акустическом поле) оптимизирующие (акустические колебания упорядочивают течение процесса, например, акустическое гранулирование). В табл. 4.1. приведена систематизация ГА-процессов, согласованная с общепринятой клас- [c.148]

    Обращаясь к основному уравнению массопередачи М — = КАгуРх, отметим, что М — количество передаваемого из фазы в фазу вещества, зависящее от требуемой степени извлечения целевых компонентов и количества сырьевого потока, — рассчитывается из уравнения материального баланса —поверхность контакта фаз — связана с размерами, конструктивными особенностями и гидродинамикой массообменного аппарата К, Аср — коэффициент массопередачи и средняя движущая сила — определяются кинетикой процесса, природой и составом контактирующих фаз они отражают конкретные условия массообменного процесса и характеризуют его специфику. [c.55]

    В точке С, на выходе из первой теоретической тарелки, газовая фаза с концентрацией целевого компонента ур встречается с жидкой фазой, концентрация целевого компонента в которой х1<х . И вновь начинается переход целевого компонента из газовой фазы в жидкую до установления нового равновесия. Повторив описанные построения, получим треугольник СРЕ, соот1зетствуюш,ий второй теоретической тарелке, и т. д. Число треугольников, построенных таким образом между рабочей и равновесной линиями от точки В до точки А, соответствует обш,ему числу теоретических тарелок массообменного аппарата. Число теоретических тарелок зависит от расстояния между рабочей и равновесной линиями, т. е. от двил- ущей силы массообменного процесса Ау и Ах. Чем меньше расстояние между рабочей и равновесной линиями, тем меньше движущая сила процесса, тем больше требуется ступеней контакта фаз, т. е. тем больше требуется теоретических тарелок. [c.78]

    AsanoK.,Fuj itaS., hem. Eng. S i., 26, 1187 (1971). Массообмен в широкой области изменения движущей силы. Изучение испарения чистых жидкостей в газовые потоки (в ячейке с мешалкой). [c.278]

    Несложно заметить, что характер изменения массообменных (/i//imax) и энергетических характеристик селективного проницания при ai -yoo противоположен во всем диапазоне изменения движущей силы процесса. [c.245]

    Как видно из (1.63), (1.64), по сравнению с перекрестными эффектами, развивающимися в однофазных системах [42] (например, эффекты Соре, Дюфура и др.), в случае многофазных многокомпонентных систем (с химическими реакциями, фазовыми превращениями, тепло- и массообменом), подчиняющихся модели взаимопроникающих континуумов, спектр перекрестных эффектов значительно расширяется. Так, на величину диффузионных и тепловых потоков в пределах фазы оказывает влияние относительное движение фаз (коэффициенты ап зи > / 2п+зд)- Поток тепла 5,12) между фазами определяется не только разностью температур фаз, но и движущими силами межфазного переноса массы (коэффициенты i,2jv+2.....2Л42П+1) и химических превращений (коэффициенты, 121 > 2jv+i). Скорость транспорта вещества к-то компонента между фазами определяется прежде всего движущей силой межфазного массопереноса, состоящей из трех частей разности потенциалов Планка (V-ik [c.59]

    Существенную роль в массообменном аппарате ифает неравномерность распределения парожидкостных потоков и, как следствие, неравномерность распределения концентрации компонентов по сечению аппарата (например, на ситчатых тарелках диаметром 5,0 м концентрации в разных точках сечения тарелки различались в 3 раза), что приводит к потерям движущей силы процесса массопередачи. [c.89]

    Массообменные или диффузионные процессы связаны с переходом компонентов из одной фазы в другую с целью их разделения. Движущей силой массообмениых процессов является разность концентраций или градиент концентраций, а скорость процесса определяется скоростью перехода вещества из одной фазы в другую, т. е. скоростью массопередачи или скоростью диффузии. [c.216]

    При совместном протекании тепло- и массопередачи вид расчетной формулы для движущей силы определяется механизмом этих явлений. Как показано выше (стр. 89), сзга ествует несколько возможных схем теплопередачи между газом и жидкостью, сопровождаемой массообменом. Наиболее важны для практики охлаждение не насыщенного водяным паром газа, сопровождаемое испарением жидкости, и охлаждение насыщенного газа с конденсацией водяного пара. Для первого случая уравнение теплопередачи в пенном слое имеет вид [c.93]

    Формулы (III.39)—(III.40) справедливы лишь для случая, когда потоки фаз равномерно распределены по поперечному сечению аппарата, перемешивание отсутствует и все частицы каждой фазы движутся с одинаковыми скоростями (режим идеального вытеснения). В реальных аппаратах режим движения фаз всегда отличается от идеального и движущая сила процесса зависит от перемешивания. Учет влияния перемешивания на изменение концентраций по высоте (длине) аппарата и соответственно на среднюю движущую силу процесса возможен, если экспериментально определены коэффициенты продольного перемешивания (см. стр. 159). Так как чаще всего экспериментальные данные по перемешиванию отсутствуют, то расчет средней движущей силы процесса массопередачи проводят по формулам (III.39)—(III.40), получая условные коэффициенты массопередачи — Ks и При этом не всегда имеет место пропорциональная зависимость между скоростью процесса и движущей силой, как это должно следовать из уравнения (1) — см. введение. Коэффициент массопередачи в таком случае зависит от концентрации поглощаемого или десорбируемого компонента и это создает дополнительные трудности при обобщении опытных данных и создании научно обоснованных методов расчета массообменных процессов. [c.142]

    Основными вопросами, изучаемыми в массопередаче, являются законы фазового равновесия, позволяющие установить равновесные концентрации и направление течения процесса движущая сила массообменных процессов коэффициенты скорости массообменных процессои. [c.251]

    Как было указано ранее, движущая сила массообменных процессов определяется степенью отклонения от равновесия или расстоянием от равновесия. Последнее определяется разностью между рабочей и равновесной концентрациями или равновесной и рабочей, в зависимости от того, какие из них больше. При этом очевидно, что движущую силу можно выражать либо через концентрации распределяемого вещества в фазе С, т. е. через У, либо череа коицеытра-ции его в фазе Ь, т. е. через X. [c.253]


Смотреть страницы где упоминается термин Массообмен движущая сила: [c.22]    [c.201]    [c.251]    [c.42]   
Процессы и аппараты химической технологии Часть 2 (2002) -- [ c.24 ]

Процессы и аппараты химической технологии Часть 2 (1995) -- [ c.24 ]




ПОИСК





Смотрите так же термины и статьи:

Движущая сила

Массообмен



© 2025 chem21.info Реклама на сайте