Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Массообмен в условиях противотока

    Противоток веществ. Противоток является рациональным способом максимального использования исходных веществ в гетерогенных системах (за исключением твердое — твердое), когда фазы не очень измельчены и значительно отличаются по плотности, что способствует быстрому их разделению. Если эти условия соблюдены, можно перемещать в противоположных направлениях потоки различных веществ, между которыми происходит массообмен. Принцип противотока иллюстрируется схематично рис. 1Х-6. [c.357]


    В формуле (7.76), как и в формуле (7.70), определяющей величиной является критерий а. Этот критерий, характеризующий соотношение емкостей фаз по переходящему реагенту, был получен [25—27] при решении уравнений, описывающих массопередачу в условиях противотока. Он является чисто массообменным и играет большую роль при термодинамическом расчете жидкостной экстракции [28]. [c.121]

    Парциальный дефлегматор следует рассматривать как массообменный аппарат, в котором происходит дополнительное разделение в условиях противотока с непрерывной конденсацией части паровой фазы. В качестве характеристики разделяющей способности дефлегматора обычно используется задание его эффективности разделения, аналогично тому, как это делается при задании к. п. д. тарелки (см. табл. 15, модель 2). Однако это — грубое приближение, поскольку невозможно, например, моделировать парциальные дефлегматоры с эффективностью разделения больше 1, и, кроме того, появляются трудности с учетом влияния параметров режима не разделительную способность дефлегматора. [c.304]

    Парциальный дефлегматор необходимо, вообще говоря, рассматривать как массообменный аппарат, в котором происходит дополнительное разделение в условиях противотока с непрерывной конденсацией части паровой фазы. В литературе пока неизвестны примеры подобного подхода к математическому описанию дефлегматора. Практически в качестве характеристики его разделения используется задание его эффективности разделения, аналогично тому, как это делается при задании к. п. д. тарелки. Естественно, что подобный подход является весьма грубым приближением к действительности, поскольку в этом случае не представляется возможным, например, моделировать парциальные дефлегматоры с эффективностью разделения больше 1, и, кроме того, появляются трудности с учетом влияния параметров режима на разделительную способность дефлегматора.  [c.258]

    Рассмотрим сначала режим противотока в стационарных условиях. При чистом массообмене, не осложненном химической реакцией, имеется только один компонент, переходящий из одной фазы в другую. Поэтому выражение материального баланса для элементарного объема аппарата можно записать в следующем виде  [c.384]

    Массообменный эффект сети аппаратов при прочих равных условиях зависит от того, каким образом аппараты собраны в сеть. Покажем возможности соединения в сеть простейшей системы из двух аппаратов таких вариантов — пять (рис,10.30). При этом в каждом варианте внутри отдельного устройства возможны различные СКК — прямоток, противоток, ИП одной или обеих фаз. [c.831]


    Главными достоинствами карусельных экстракторов являются соблюдение противотока между фазами, весьма малая степень разрушения частиц в процессе экстрагирования, хорошее использование объема аппарата, относительная простота конструкции. Недостаток этих экстракторов — неравномерность процесса, так как в условиях неподвижного слоя жидкость не одинаково проникает в поры по всему объему материала и в процессе участвует не вся действительная поверхность частиц. При орошении жидкость движется в слое с малой скоростью. Это тон е отрицательно влияет на массообмен. Наконец, процесс в таких аппаратах не является строго непрерывным, поскольку пока идет выгрузка материала из одной секции и загрузка в другую (иногда стекания жидкости из третьей) ротор находится в неподвижном положении. [c.202]

    Поскольку расчет массообменных аппаратов обычно проводится для условий изменения температуры и потоков по его высоте и требует применения сложных итерационных расчетов, целесообразно рассмотреть законченные аналитические решения общей системы дифференциальных уравнений. Определяя коэффициенты С из уравнения (5.46) и подставляя их в уравнения (5.43) и (5.44), для противотока получаем  [c.199]

    Ректификация состоит в многократном чередовании и повторении процессов испарения и конденсации в противотоке пара и жидкости при температуре кипения. Ректификация относится к многоступенчатым противоточным процессам разделения (протекает по схеме каскада с постоянным потоком) и принципиально может обеспечить любую заданную степень разделения . Противоток пара и жидкости создается благодаря наличию в схеме ректификационной установки испарителя (куба), связанного с нижним концом, и конденсатора (дефлегматора), связанного с верхним концом колонны. Тепло, подводимое к кубу, благодаря теплообмену между паром и жидкостью в адиабатических условиях передается последовательно от ступени к ступени и отводится хладоагентом в конденсаторе. Благодаря массообмену между потоками пара и жидкости более летучий компонент переносится потоком пара в направлении снизу вверх, а менее летучий компонент — потоком жидкости сверху вниз. Таким образом, в основе ректификации лежит тепло- и массообмен между потоками пара и жидкости. При этом движущая сила массообмена определяется фазовым равновесием жидкость — пар и материальным балансом. Соотношения между основными параметрами ректификации, определяемые законами фазового равновесия жидкость — пар и материальным балансом, составляют статику ректификации. [c.42]

    Способы проведения процессов массопереноса отличаются друг от друга условиями взаимодействия фаз и направлением их относительного движения. Различают однократное, непрерывное и ступенчатое взаимодействие фаз. При однократном взаимодействии фазы смешиваются, а затем разделяются по завершении процесса массопереноса. Этот способ характерен для периодических процессов, в которых перерабатываются относительно небольшие количества смесей. В непрерывных процессах массообмен осуществляется при постоянном движении фаз или в многоступенчатой установке, в каждой ступени которой фазы взаимодействуют друг с другом, а по выходе из ступени — разделяются. В обоих случаях эффективность массообмена определяется направлением относительного движения фаз и структурой их потоков. По направлению относительного движения фаз, как и в процессах теплообмена, различают противоток, прямоток, перекрестный и смешанный ток. Некоторые процессы массопереноса проводятся, кроме того, при движении одной фазы через неподвижный слой другой фазы. [c.443]

    В работе [256] иа основе решения уравнения Навье — Стокса в постановке Прандтля и уравнения конвективной диффузии при заданных эффективных коэффициентах турбулентной диффузии и температуропроводности предложены методы расчета тепло- и массопереноса в двухфазных системах, используемых в высокоэффективных и высокоскоростных тепло- и массообменных аппаратах, работающих в турбулентных режимах. Совместный тепло- и массоперенос экспериментально исследовался в [257], где изучалось влияние турбулентного газового потока и течения жидкой пленки на скорость массо- и теплопереноса в пленочных колоннах в условиях прямотока и противотока движущихся фаз. Установлено, что при этих условиях образование волн на поверхности жидкости практически не влияет на скорость процессов тепло- и массопереноса. [c.127]

    Пользуясь зависимостями (Х,64)—(Х,67), можно сопоставить различные виды взаимного направления движения фаз. Из них наиболее выгодным является тот вид тока, при котором необходима меньшая высота аппарата, т. е. меньше Поу (при одинаковых ф и А), или достигается более глубокое извлечение, т. е. больше ф (при одинаковых Поу и А). Сравнение показывает, что при прочих равных условиях ббльшие значения ф или меньшие значения Пду достигаются при противотоке. Поэтому по принципу противотока работает большинство массообменных аппаратов. [c.418]


    Однако в разных условиях теплообмена и технологии значение коэффициентов тепломассообмена может быть оценено по-разному, что затрудняет сравнение различных процессов и конструкций по степени интенсификации тепломассообмена. Для нормирования этого показателя и его широкого использования в практике оценки интенсификации обменных процессов (наряду с тепловым и итоговым физико-химическим КПД) нами предлагается следующий прием. Реальные обменные процессы условно приводятся к эквивалентной линейной одномерной аппроксимационной схеме обмена в движущихся вещественных средах. При этом степень интенсификации тепломассообмена в виде приведенных коэффициентов тепломассообмена к и к оценивается, исходя из формул для значений прямых тепло- и массообменных КПД и (см. табл. 4.21). Например, для случая противотока показатель интенсивности [c.337]

    Значительная часть массообменной аппаратуры работает при непрерывном потоке обеих фаз, хотя часто используются и периодические режимы, особенно при проведении химических реакций, например гидрирования в автоклаве. Противоток предпочтителен при протекании массопередачи в периодическом режиме или в условиях прямотока, когда равновесие устанавливается слишком медленно. Флегма предусматривается в большинстве конструкций дистилляционного оборудования, включая абсорберы-рибойлеры , и иногда применяется при жидкостной экстракции, а также в адсорберах с движущимся слоем сорбента. [c.610]

    Др. тип барботажных тарелок, работающих в условиях противотока газа и жидкости,— провальные. Они не имеют переливных устр-в и представляют собой перфориров. плато, на к-ром в результате взаимод. жидкости с газом поддерживается определ. слой жидкости. Величина фактора Ро (см. Массообменные аппараты) для барботажных тарелок достигает 2—2,5 кг /(с м ). [c.559]

    Преимущества насадочных контактных устройств перед тарельчатыми общеизвестны и заключаются прежде всего в исключительно малом перепаде давления на одну ступень разделения. Среди них более предпочтительны регулярные насадки, поскольку они имеют регулярную заданную структуру и их гидравлические и массообменные характеристики более стабильны по сравнению с насыпными. Гидродинамические условия эксплуатации насадок при перекрестном контакте фаз существенно отличаются от таковых при противот е. При перекрестном токе жидкость движется сверху вниз, а пары -горизонтально, следовательно, жидкая и паровая фазы проходят различные независимые сечения, площади которых можно регулировать, а при противотоке - одно и то же сечение. Поэтому перекрестноточный контакт фаз позволяет регулировать в оптимальных пределах плотность жидкостного и парового орощений изменением толщины и поперечного сечения насадочного слоя и тем самым обеспечить почти на порядок превыщающую при противотоке скорость паров (в расчете на горизонтальное сечение колонны) без повышения гидравлического сопротивления и значительно широкий диапазон устойчивой работы колонны при сохранении в целом по аппарату принципа и достоинств противотока фаз, а также устранить такие дефекты, как захлебывание, образование байпасных потоков, брызгоунос и другие, характерные для противоточных насыпных насадочных или тарельчатых колонн. Экспериментально установлено, что перекрестноточный насадочный блок конструкции УНИ, выполненный из металлического сетчато-вяза-ного рукава, высотой 0,5 м эквивалентен одной теоретической тарелке и имеет гидравлическое сопротивление в пределах всего 1 мм рт.ст. (0,13 103 Па), т.е. в 3 - 5 раз ниже по сравнению с клапанными тарелками. Это достоинство особенно ценно тем, что позволяет обеспечить в зоне питания вакуумной колонны при ее оборудовании насадочным слоем, эквивалентным 10 - 15 тарелкам, остаточное давление менее 20 - 30 мм рт.ст. и, как следствие, значительно углубить отбор вакуумного газойля или отказаться от подачи водяного пара в низ колонны. [c.51]

    Внимание, привлеченное результатами теоретического анализа преимущества прямотока перед противотоком жидкости на смежных тарелках, проведенное Киршбаумом и Льюисом в 1935 г., не получило широкого использования в промышленности из-за необоснованной идеализации ими структуры потока жидкой и паровой фаз моделью идеального вытеснения. Нами была составлена структура комбинированной математической модели потока жидкости для трех смежных тарелок и получена оригинальная усредненная структура М-й тарелки при прямотоке и противотоке жидкости [1], [2]. Аналитическое решение систем уравнений массопередачи для двух вариантов движения жидкости, при условии полного перемешивания пара, позволило получить зависимости КПД аппарата для них. Из проведенного анализа параметрической чувствительности эффективности прямотока и противотока следует, что усилия ученых и конструкторов, работающих в области интенсификации массообменных тарельчатых агшаратов не дадут желаемого результата при противоточном движении жидкости на тарелках. Поэтому при конструировании барботажных аппаратов с переливом необходимо сочетание идеальной структуры пенного слоя на тарелках (идеальное вытеснение) о однонаправленным движением жидкости на них. Проектный расчет числа тарелок по разделению смеси аце-гон-вода этанол-вода на Уфимском заводе синтетического спирта показал, что при однонаправленном движении жидкости число тарелок снижается на 30,,.50%. [c.171]

    В зависимости от диаметра отверстий о и доли живого сечения (р провальная тарелка может частично или полностью предотвращать циркуляцию твердой фазы в объеме аппарата, В первом случае (при больших ( о и ф) тарелка выполняет роль тормозящего устройства, лишь до некоторой степени ослабляющего продольное перемешивание адсорбента в соседних секциях. Провальные решетки второго типа рассчитывают на определенный, заданный по технологическим условиям, расход адсорбента, движущегося в аппарате противотоком очи- К щаемой жидкости, не допускают прямо- точного перемещения жидкой и твердой фаз и позволяют добиться более высокой эффективности работы массообменного аппарата. Следует, однако, отметить, что устойчивая работа адсорбера, оборудованного такого типа провальными тарелками, сохраняется в очень узком интервале изменения расходов твердой и жидкой фаз, а малейшее отклонение тарелки от горизонтального положения при ее монтаже приводит к циркуляции твердой фазы между секциями. [c.161]

    В многоступенчатом массообменном аппарате взаимодействие газа и жидкости на каждой ступени может происходить в противотоке, прямотоке или в перекрестном токе фаз. Схема относительного движения потоков на контактном устройстве зависит от способа подачи на него газа и жидкости, условий взаимодействия и способа их отвода из зоны контакта. Наиболее эффективные конструкции контактных устройств сочетают одновременно несколько принципов относительного движения фаз — перекрестного и противоточного (перекрестно-противоточное движение), перекрестного и прямоточного (перекрестнопрямоточное движение). Еще более сложное относительное движение потоков осуществляется на вихревых контактных устройствах — с круговым, вращательным движением потоков. [c.13]

    Таким образом, аппараты ВР работают по принципу совмещения противотока в целом по аппарату с прямотоком в зоне контакта. В койтактных камерах образуется интенсивно турбули-зованная газожидкостная система, состоящая из капель и (или) струек жидкости, тесно перемешанных со струями и пузырьками газа, и приобретающая (при определенных условиях) устойчивое вращательное движение. В объеме этой смеси и происходит массообмен. / [c.184]

    Для обеспечения непрерывного производства следует воспользоваться проточной системой с пропусканием обеих фаз в противотоке, как это схематически показано на рис. 1-9,6. Такой реактор, в принципе, позволил бы проводить процесс в статических условиях, если бы массообмен между обеими фазами был достаточно активен. Для практического осуществления таких процессов без одновременной активации смешения в послереакционной зоне еще не удалось найти удовлетворительного технологического решения. Для поддержания градиентов концентрации независимыми от перемешивания прибегают к использованию батареи реакторов, в которых концентрация вспомогательных растворов постепенно изменяется. Такое устройство приводит, однако, к снижению селектив-, ности процесса. Это легко понять, если учесть, что концентрация изобутилена, введенного в первый реактор, сразу же оказывается приведенной к более низкой рабочей концентрации, чем во фракции С4, в то время как концентрация остальных, менее реакционноспособных олефинов остается практически такой же, как и в исходном сырье. Такое изменение концентрации, которое воспроизводится на каждой ступени, снижается при увеличении числа аппаратов в каждой батарее и обратилось бы в нуль при бесконечно большом числе аппаратов. Избирательность атаки изменяется, таким образом, одновременно с числом ступеней реактора. Зависимость между степенями превращения олефинов в двухступенчатой батарее, действующей по принципу противотока, показана на рис. 1-9, в [8]. Ниже приведена сводная таблица (табл. 1-2) ди-оксановых производных и диенов, которые получаются из каждого рассмотренного олефина, с выходами, полученными на каждой стадии с чистыми реагентами. [c.40]

    Все эти трудности аналогичны встречающимся при разработке массообменных аппаратов для контакта газовой (паровой) и жидкой фаз в процессах ректификации, абсорбции и т. п. С целью максимального приближения к режиму противотока, получения на выходе из аппарата значительно более однородного продукта и обеспечения оптимальных гидродинамических условий на каждой ступени во всех этих процессах применяется метод секционирова- [c.62]


Смотреть страницы где упоминается термин Массообмен в условиях противотока: [c.468]    [c.548]   
Гидродинамика, массо- и теплообмен в дисперсных системах (1977) -- [ c.86 ]




ПОИСК





Смотрите так же термины и статьи:

Массообмен

Противоток



© 2024 chem21.info Реклама на сайте