Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диэлектрическая проницаемость углеводородов

    Предложено [4] оценивать октановое число топлива по его диэлектрической проницаемости. Диэлектрическая проницаемость углеводородов зависит от их строения. У ароматических углеводородов она выше, чем у парафиновых (данные при 30°С)  [c.189]

    СИСТЕМАТИЗИРОВАННАЯ СВОДКА ЛИТЕРАТУРНЫХ ДАННЫХ ПО ДИЭЛЕКТРИЧЕСКОЙ ПРОНИЦАЕМОСТИ УГЛЕВОДОРОДОВ [c.404]

    В основу помещаемых в табл. 4 значений диэлектрической проницаемости углеводородов положены данные оригинальных работ, причем использована литература, прореферированная в реферативных журналах до конца 1955 г. В табл. 4 в третьем столбце приводится величина диэлектрической проницаемости при температуре, указанной в четвертом столбце. В пятом столбце дается величина среднего температурного коэффициента диэлектрической проницаемости, умноженного на 10 . В шестом столбце отмечен интервал температур, для которого был определен температурный коэффициент. [c.404]


    Диэлектрическая проницаемость углеводородов [c.405]

Рис. 5. Зависимость энергии взаимодействия углеводородной пленки в водной среде (а) и диэлектрической проницаемости углеводорода (2) и воды (2) (б) от частоты Рис. 5. <a href="/info/362259">Зависимость энергии</a> <a href="/info/1097883">взаимодействия углеводородной</a> пленки в <a href="/info/372854">водной среде</a> (а) и диэлектрической проницаемости углеводорода (2) и воды (2) (б) от частоты
    В табл. XIX по диэлектрическим проницаемостям углеводородов указаны [c.371]

    ТАБЛИЦА XIX. ДИЭЛЕКТРИЧЕСКАЯ ПРОНИЦАЕМОСТЬ УГЛЕВОДОРОДОВ [c.373]

    Опасность статического электричества при электризации жидких углеводородов можно оценить, зная величину электрического заряда. При увеличении плотности электрического заряда напряженность поля может достигнуть такой величины, при которой произойдет электрический пробой. Величина электрического заряда, соответствующая пробою диэлектрика (нефтепродукта), будет предельной, больше которой не может быть плотность электрического заряда в трубопроводе. Предельная величина электрического заряда в трубопроводе прямо пропорциональна относительной диэлектрической проницаемости жидкости, пробивной напряженности электрического поля и обратно пропорциональна диаметру трубопровода. Увеличение диаметра трубы приводит к уменьшению предельной величины заряда статического электричества. При увеличении времени выдержки жидких углеводородов под напряжением предельная величина заряда уменьшается. С увеличением площади поверхности электродов предельная величина заряда жидкого диэлектрика снижается при постоянном напряжении. Предельная величина заряда очищенных диэлектриков сильно зависит от давления. При возрастании давления предельная величина заряда увеличивается. [c.151]

    У стены с окнами размещают лабораторные столы 1, к которым подводится электроэнергия и вода. На этих столах в основном проводят работы по измерению различных физико-химических свойств получаемых фракций дистиллята показателя преломления с помощью рефрактометра Аббе или интерферометра, температур затвердевания и плавления диэлектрической проницаемости и оптического вращения с помощью поляриметра. Рабочий стол 4, установленный в средней части основного помещения лабораторий, предназначен преимущественно для химических работ. У большей стены, выходящей в вестибюль, также размещают стенд 6. Для перегонки ядовитых веществ, вызывающих головную боль и головокружение (таких, как днэтиловый эфир, бензол, хлорированные углеводороды или органические нитросоединения) в лаборато- [c.469]


    Состояние теории в настоящее время таково, что возможно чисто качественное рассмотрение влияния среды, в которой реакция протекает, на ее скорость. Применительно к кислотному катализу жидкими кислотами в процессах, используемых в переработке нефти, можно указать на следующее. В принципе кислотный катализ может осуществляться как в кислотной фазе при растворении в ней углеводородов, так и в углеводородной при растворении в ней кислоты. Так как диэлектрическая постоянная углеводородов мала ( 2), то ионы в углеводородной фазе могут существовать только в виде ионных пар. В кислотной фазе, имеющей высокую диэлектрическую проницаемость, идет диссоциация на независимые друг от друга ионы, реагирующие со скоростью, на несколько порядков большей, чем ионы в ионных парах. Поэтому реакция всегда идет в кислотной фазе. [c.164]

    Число ионных пар (Д+/А ) обратно пропорционально диэлектрической проницаемости среды. Молекулы ароматических и неароматических углеводородов, входящие в сферу диаметром до 120 А, [c.191]

    Нефтяные масла рассматриваются в виде дисперсных систем. При этом установлено, что в зависимости от способа получения и соответственно вязкости масел, дистиллятных, остаточных, компаундированных в них образуются структурные элементы различного строения [ 10]. Наличием межмолекулярных взаимодействий между компонентами смесей парафино-нафтеновых и тяжелых ароматических углеводородов объясняется неподчинением правилу аддитивности таких их свойств, как диэлектрическая проницаемость и экстинкция. В некоторых работах [И] показано, что бензольное кольцо является специфическим центром межмолекулярных взаимодействий за счет чего ароматические углеводороды в растворах образуют ассоциаты, состав и устойчивость которых зависит от химического строения взаимодействующих молекул. В маслах и топливах обнаружены явления самоассоциации ароматических углеводородов и ассоциации их с присадками [ 12]. [c.35]

    Другим примером систем, в которых сольватация, по-видимо-му, оказывает существенное влияние на устойчивость, могут служить дисперсные системы с неполярной углеводородной средой, играющие важную роль при производстве и применении нефтепродуктов. Такие системы, например, растворы поверхностно-активных веществ и высокодисперсные взвеси в углеводородах подробно изучены Г. И. Фуксом и его сотр. Оказалось, что устойчивость этих систем зависит от структуры молекул углеводорода и ее соответствия структуре молекул частиц дисперсной фазы, а. также от диэлектрической проницаемости среды и от наличия следов веществ с полярными и дифильными молекулами. Впрочем, для этих систем, как показал Овербек, нельзя пренебрегать двойным электрическим слоем и электростатическими взаимодействиями.,  [c.282]

    О таком индивидуальном характере взаимодействия свидетельствуют прежде всего данные Вальдена, систематически исследовавшего электропроводность солей, т. е. сильных электролитов в ряду растворителей (спирты, кетоны, углеводороды, галоидоуглеводороды, эфиры, амины, нафтолы, нитро-замещенные и т. д.). Этими работами было показано, что поведение солей в различных растворителях зависит не только от диэлектрической проницаемости растворителя, как это следует из теории Фуосса и Крауса, но и от химической природы растворителя и соли. Вальден показал, что одинаково [c.9]

    Таким образом, чем сильнее кислота НАп и чем выше диэлектрическая проницаемость среды, тем вероятнее ионизация продукта присоединения, сопровождающаяся образованием Н (Аг) Нг -ионов, т. е. тем более отчетливо углеводороды проявляют основные свойства. [c.403]

    Углеводороды. Диэлектрическая проницаемость углеводородов в широком диапазоне частот (от нуля вплоть до ближней УФ-области) практически не изменяется, что позволяет характеризовать их одночленным дисперсионным уравнением с собственно характеристической частотой со = 2,13-101 рад1сек или частотой, соответствующей потенциалу ионизации (для декана Ja = — 10,19 Эй и (й, = 1,54-101 рад сек для этана /о = 11,65 зе и = 1,76- [c.55]

    Обычные неорганические соли натрия и калия не растворимы в неполярных органических растворителях. Это верно и для солей неорганических анионов с небольщими органическими катионами, например для тетраметиламмония. Подобные аммонийные соли часто способны, однако, растворяться в ди-хлорметане и хлороформе. Более того, использование относительно больщих органических анионов может обеспечивать растворимость солей щелочных металлов в таких растворителях, как бензол. Например, диэтил-н-бутилмалонат натрия дает 0,14 М раствор в бензоле, для которого понижение точки замерзания неизмеримо мало, что говорит о высокой степени ассоциации. Подобным образом большие ониевые катионы (например, тетра-м-гексиламмония) делают растворимыми соли даже небольших органофобных анионов (например, гидроксид-ионов) в углеводородах. Ионофоры, т. е. молекулы, состоящие из ионов в кристаллической решетке, диссоциируют (полностью или частично) на сольватированные катионы и анионы в растворителях с высокими диэлектрическими проницаемостями. Подобные растворы в воде являются хорошими проводниками. В менее полярных растворителях даже сильные электролиты могут растворяться с образованием растворов с низкой электропроводностью это означает, что только часть растворенной соли диссоциирована на свободные ионы. Чтобы объяснить такое поведение растворов, Бьеррум выдвинул в 1926 г. гипотезу ионных пар. Впоследствии его гипотеза была усовершенствована Фуоссом [38] и рядом других исследователей. Ионные пары представляют собой ассоциаты противоположно заряженных ионов и являются нейтральными частицами. Стабильность ионных пар обеспечивается в основном кулоновскими силами, но иногда этому способствует и сильное взаимодействие с ок- [c.16]


    Диэлектрическая проницаемость реактивных топлив близка к диэлектрической проницаемости нафтеновых углезодородов. При увеличении в топливе содержания ароматических углеводородов и высококипящих фракций диэлектрическая проницаемость возрастает. Средние значения диэлектрической проницаемости реактивных топлив в интервале температур —20-н-Ь140°С приведены в табл. 2.37.  [c.75]

    Теоретические исследования поведения органических веществ в неводных растворах при наложении неоднородного электрического поля [117, 118] позволяют объяснить поведение частиц твердых углеводородов петролатума в таком поле. При сравнительно малых напряженностях электрического поля вследствие поляризации двойного слоя частицы движутся в область большего градиента потенциала. При увеличении напряженности, когда происходит поляризация материала частиц, возникает пондеромотор-наясила, которая изменяет направление частиц в зависимости от диэлектрической проницаемости дисперсной фазы и дисперсионной среды. Измерения при помощи моста переменного тока Р-570 на частоте 1000 Гц показали, что диэлектрическая проницаемость дисперсионной среды больше, чем дисперсной фазы (2,00 и 1,93 [c.189]

    В главе XXI (Электрические и магнитные свойства углеводородов, автор В. В. Михайлов) собраны и научно обработаны литературные данные по следующим вопросам диэлектрическая проницаемость, дипольные моменты, магнитная восприимчивость и магнитное вращение плоскости поляризации ( эффект Фарадея ), Перечисленные свойства имеют значение для практики (изолирующие свойства диэлектриков), для исследования строения углеводородов и некоторых свойств жидкостей (дипольные моменты), для анализа смесей углеводородов (магнитное вращение плоскости иоляризацрш) и т. д [c.5]

    В настоящей главе рассматриваются диэлектрическая проницаемость, дипольный момент, магнитная восприимчивость и магнитное вращение плоскости поляризации (эффект Фарадея) углеводородов. Эти свойства имеют большое значение и сами по себе как характеристика индивидуального углеводорода, но наряду с этим определение некоторых из перечисленных выше свойств может быть использовано и для установлеиия состава углеводородных смесей. [c.396]

    Ряд сведений по диэлектрической пр01[ицаем0сти веществ можно найти в книге Кларка [64]. Численные значения диэлектрических постоянных индивидуальных веществ н жидком состоянии приводятся в таблицах Мариотта и Смита [165]. Методы измерения диэлектрической проницаемости рассматриваются в главе XXI книги Зайсбергера [1]. Некоторые общие сведения о диэлектрических свойствах органических веществ, в том числе и углеводородов, приведены в обзорной статье Моргана и Иегера [171]. [c.396]

    В соответствии с теорией диэлектрическая постоянная газов растет с повышением давления. В этой области для углеводородов имеются данные Верещагина п Дугиной [3] по этену. Л. Ф. Верещагин и Н. С. Дугина измеряли диэлектрическую проницаемость этена под давлением от нескольких десятков до двух тысяч атмосфер и при двух температурах 34 и 75°. Точность измерений оценивается авторами не ниже 0,5%. Диэлектрическая проницаемость измерялась по методу биений при частоте в 2 мггц. Полученные данные приведены в табл. 2. [c.403]

    Сложным является влияние полярных органических веществ на солюбилизацию углеводородов. Низкомолекулярные добавки (например, метанол, ацетон, диоксан) снижают солюбилизирующую способность коллоидных ПАВ. Это обусловлено тем, что в смешанном водно-органическом растворителе вследствие понижения диэлектрической проницаемости повышается энергия электростатического отталкивания и уменьшаются равновесный размер и олеофильность мицелл. Напротив, плохо растворимые в воде полярные добавки например, спирты с п>4, фенолы), образующие смешан- [c.84]

    Неполярные жидкие фазы. Апиезоны — смесь парафиновых и нафтеновых углеводородов. Высококипящие остатки после разгонки нефти. Плотность 0,76, диэлектрическая проницаемость 2,65. Апиезон Ь — жидкая фаза с максимальной рабочей температурой колонки 320° С, минимальная рабочая температура 80° С. Апнезоны М, К, Ш имеют максимальную рабочую температуру колонки 275—300° С. Относительная полярность по Роршнейдеру 7—9. Рекомендуемые растворители метиленхлорид, ксилол, толуол. Применяются для разделения высококипящих веществ. [c.279]

    Гексадекан ЧвНэ . Мол. вес 226,45, плотн. 0,772 при 20° С, т. кип. 286,8° С, т. плавл. 18,1° С, диэлектрическая проницаемость 2,06, показатель преломления 1,434, полярность по Роршнейдеру 2. Рекомендуемые растворители гексан, диэтиловый эфир, петролейный эфир. Максимальная рабочая температура колонки 7 С, минимальная 20 С. Применяется для разделения легких углеводородов. [c.279]

    Диметилформамид НСОЫ (СН,,)2. Мол. вес 73,09, плотн. 0,945— 0,948 при 20° С, т. плавл. 60° С, т. кип. 153 С, диэлектрическая проницаемость 37,6, показатель преломления 1,305, полярность по Роршнейдеру 80. Рекомендуемый растворитель — дихлорметан. Рабочая температура колонки 30° С. Применяется для разделения легких углеводородов до С5. [c.281]

    Диметилсульфолан (диметилтетрагидротиофен-1,1-диоксид). Мол. вес 148,23, т. плавл. 3° С, т. кип. 281° С, диэлектрическая проницаемость 29,5, показатель преломления 1,473, полярность по Роршнейдеру 72. Рекомендуемый растворитель—дихлорметан. Максимальная рабочая температура колонки 30—50° С. Применяется для разделения легких углеводородов. [c.281]

    Триэтаполамин N (СН2СНзОН)з. Мол. вес 149,18, плотн. 1,124 при 20° С, т, плавл. 21,2° С, т. кип. 350° С, диэлектрическая проницаемость 29, показатель преломления 1,485, полярность по Роршнейдеру 87. Рекомендуемые растворители дихлорметан, хлороформ. Максимальная рабочая температура колонки 75—100° С. Применяется для разделения легких углеводородов и гетероциклических соединений. [c.281]

    Мол. вес 150,18, т. плавл. 5° С, т. кип. 280—290° С, плотн. 1,118—1,125 при 20° С, диэлектрическая проницаемость 23, показатель преломления 1,456, полярность по Роршнейдеру 78. Р екомендуемые растворители метанол, этанол. Рабочая температура колонки 70—100° С. Селективно разделяет углеводороды различных классов. [c.281]

    Дифениламин (СоИ5)а NH. Мол. вес 169,23, плотн. 1,190 при 20° С, т. плавл. 53° С, т. кип. 302° С, диэлектрическая проницаемость 3,45, показатель преломления 1,558. Максимальная рабочая температура колонки 85° С, минимальная 54° С. Рекомендуемый растворитель—дихлорметан. Применяется для разделения ароматических углеводородов. [c.281]

    Диоктилфталат jHi ( OO gHiijj. Мол. вес 390,56, плотн. 0,982 при 20° С, т. плавл. 25° С, т. кип. 386° С, диэлектрическая проницаемость 5,1, показатель преломления 1,484. Максимальная рабочая температура колонки 150° С Рекомендуемый растворитель — дихлорметан. Универсальная жидкая фаза. Применяется для разделения углеводородов, спиртов, фенолов, сложных эфиров, альдегидов, жирных кислот.< [c.282]

    Дидецилфталат ( OO j(,H2i)2. Мол. вес 446,68, т. кип. 485° С, диэлектрическая проницаемость 4,8, показатель преломления 1,493, полярность по Роршнейдеру 25. Минимальная температура колонки 25° С, максимальная — 135° С. Рекомендуемый растворитель — дихлорметан. Универсальная жидкая фаза. Применяется для разделения углеводородов и кислородсодержащих соединений. [c.282]

    Т рикрезилфосфат (тритолилфосфат) (СНзСаН40)зР0. Мол. вес 368,39, плотн. 1,179 при 20° С, т. плавл. 35° С, т. кип. 275 при 20 мм рт. ст., диэлектрическая проницаемость 6,7—7, показатель преломления 1,555, полярность по Роршнейдеру 48. Максимальная температура колонки 130° С. Рекомендуемые растворители ацетон, этанол. Селективная жидкая фаза. Применяется для разделения ароматических и алифатических углеводородов, кетонов, сложных эфиров и других кислород- и галогенсодержащих углеводородов. Не годится для спиртов и аминов. По возможности не должен содержать орто-изомера ввиду его особой ядовитости. [c.282]

    Таким образом, энергия реактивного взаимодействия полярных молекул с окружающей средой в основном определяется величиной дипольного момента т и статической диэлектрической проницаемостью ев. Для полярных раствО рителей эта энергия Ен может быть значительно больше энергии ориентационного и дисперсионного взаимодействий. Однако для растворов углеводородов в полярных растворителях величина Ен мала, так как дипольный момент углеводородов т О. [c.11]

    Классификация растворителей вытекает из свойств водородных соединений метан — инертный растворитель (и все углеводороды), аммиак — основной, вода — амфотерный, фтороводород — кислый. Важнейшая характеристика растворителей — их диэлектрическая проницаемость. По ее величине все растворители располагаются в элю-отропный ряд Цвета — Траппе. Этот ряд связан с полярностью и сор-бируемостью веществ ( 24, 45, 173). Меняя химический состав растворителя, можно изменять силу растворенных в нем кислот и оснований и преврашать соли в кислоты или основания. Например, мочевина Нз —СО—1 Н2 проявляет в жидком аммиаке кислотные свойства, в безводной уксусной кислоте — сильные основные, в водном растворе — слабые основные. [c.50]

    Подвижные фазы в ЖКХ различают по их элюирующей способности. В адсорбционной хроматографии на полярных. сорбентах элюирующая сила тем больше, чем полярнее растворитель. Экспериментально уста ювленную последовательность растворителей с возрастающей элюирующей силой называют элюот-ропным рядом. Элюирующая сила е, как правило, возрастает с увеличением диэлектрической проницаемости растворителя. Чаще всего используют насыщенные углеводороды (гексан, гептан), тетрахлорид углерода, хлороформ, этанол, метанол, воду (растворители расположены в порядке возрастания элюирующей силы). Элюирующую силу можно изменять в необходимых пределах добавлением к растворителю с низкой элюирующей силой более активного растворителя. Элюирующая способность смеси резко возрастает при небольших добавлениях полярного растворителя к неполярному (рис. 28.8). Если различие в элюирующей силе растворителей незначительно, то зависимость близка к линейной. В том случае, если к неполярному элюенту добавляют полярный, способный к образованию водородных связей (спирты, эфиры и др.), удерживание и селективность определяются специфическими взаимодействиями вещество— адсорбент, вещество — элюент и элюент — адсорбент. Эту систему применяют для разделения полярных, сильноудерживаемых соединений. Водородные связи образуются как между сорбентом и веществом, так и между веществом и элюентом, что резко сказывается на хроматографическом поведении соединений. Так, фенол и анилин в элюен-те, не способном к образованию Н-связи, выходят в указанной последовательности, а в подвижной фазе, содержащей спирты, порядок противоположный. Это объясняется тем, что анилин, в состав молекулы которого входит аминогруппа —NH2, обладает большей способностью к образованию водородных связей с молекулами спирта, чем фенол. [c.600]


Смотреть страницы где упоминается термин Диэлектрическая проницаемость углеводородов: [c.208]    [c.236]    [c.55]    [c.191]    [c.191]    [c.193]    [c.392]    [c.282]   
Смотреть главы в:

Физико-химические свойства индивидуальных углеводородов -> Диэлектрическая проницаемость углеводородов




ПОИСК





Смотрите так же термины и статьи:

Диэлектрическая проницаемость



© 2025 chem21.info Реклама на сайте