Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Нуклеиновые кислоты Химическое строение нуклеиновых кислот

    Химический состав и строение нуклеиновых кислот [c.100]

    Химическое строение нуклеиновых кислот [c.213]

    Установление структуры ДНК и РНК оказалось возможным в результате одновременных усилий многих исследователей. То, что известно сейчас о строении этих нуклеиновых кислот, было выяснено благодаря применению электронной микроскопии для наблюдения некоторых самых маленьких молекул ДНК, рентгеновского дифракционного анализа, расщеплению молекул нуклеиновых кислот на составные части и, наконец, благодаря блестящей догадке Уотсона и Крика о существовании двойной спирали. В частности, химический анализ показал, что в молекулах ДНК всегда содержится приблизительно равное число единиц Т и А, а также равное число единиц Ц и Г. Это подтвердило догадку, что пары оснований Т и А, а также Ц и Г связаны друг с другом. Генетический код определяется последовательностью комбинаций этих оснований, которая может иметь, скажем, такой вид АТ, АТ, ГЦ, АТ, ГЦ, АТ, ГЦ, ГЦ, ГЦ и т.д. [c.486]


    ХИМИЧЕСКОЕ СТРОЕНИЕ НУКЛЕИНОВЫХ КИСЛОТ [c.43]

    Одними из первых псследований по изучению химического строения нуклеиновых кислот были работы, проводившиеся на биологическом факультете МГУ под руководством А. Н. Белозерского, в результате которых был накоплен обширный материал по определению нуклеотидного состава дезоксирибо- [c.519]

    Строение нуклеиновых кислот. Химическое исследование показывает, что молекулы нуклеозидов связаны в дезоксирибонуклеиновой кислоте через остатки фосфорной кислоты, причем каждый подобный остаток этерифицирован группой ОН в положении 5 одной молекулы и группой ОН в положении 3 другой молекулы нуклеозида. При этом образуются линейные макромолекулярные цени приведенной ниже формы (где X и У представляют собой пиримидиновые или пуриновые остатки) (Браун и Тодд, 1952 г.) [c.776]

    Определение строения белков является очень сложной задачей, но за последние годы в химии белка достигнуты значительные успехи. Полностью определена химическая структура нескольких белков гормона инсулина (см, рис. 53), фермента, расщепляющего нуклеиновые кислоты, — рибонуклеазы (см. рис. 54), фермента лизоцима (рис. 56), [c.375]

    К началу 1950-х годов были завершены работы по изучению принципов химического строения нуклеиновых кислот (А. Тодд, [c.6]

    Нуклеиновые кислоты — высокомолекулярные биополимеры, обнаруженные во всех типах клеток. Структурными единицами нуклеиновых кислот являются мононуклеотиды, состоящие из гетероциклических азотистых оснований (пуриновых и пиримидиновых), пентоз и фосфорной кислоты. Нуклеиновые кислоты делятся на два типа рибонуклеиновые (РНК) и дезоксирибонуклеиновые (ДНК). РНК и ДНК различаются особенностями химического строения входящих в них пиримидиновых оснований и пентоз, локализацией в клетке и функциональным назначением в клеточном метаболизме. [c.161]

    Функции, выполняемые ДНК и РНК в организме, а также их химические и физико-механические свойства различны. Помимо химического строения на свойства нуклеиновых кислот и их функции в организме весьма существенное влияние оказывают форма макромолекулы и надмолекулярные структуры, которые для рибонуклеиновых и дезоксирибонуклеиновых кислот также различны. [c.362]

    Реакции, приводящие к расщеплению фосфоэфирных (в особенности фосфодиэфирных) связей, занимают особое место в ряду других химических превращений нуклеиновых кислот и их компонентов. Они являются основой аналитических методов, используемых для определения состава и строения нуклеиновых кислот. Хотя в настоящее время химические методы гидролиза фосфоэфирных связей в значительной степени уступили место ферментативным, позволяющим проводить такое расщепление в более мягких условиях и более специфично, тем не менее возможности химических способов гидролиза еще далеко не исчерпаны. [c.541]


    Уникальные биохимические и физико-химические свойства нуклеиновых кислот определяются их высокой молекулярной массой, особенностями химического состава и структурной организации на различных уровнях надмолекулярного строения. [c.281]

    Химическое строение ДНК и РНК в настоящее время и <учено достаточно подробно. Во всех живых организмах содержатся обе нуклеиновые кислоты ДНК и РНК. Исключением являются вирусы, содержащие только одну из них. [c.440]

    Титатель узнает об этом не без некоторой тревоги, так как подозревает, что теперь его вынудят заняться еще и химическим строением нуклеиновых кислот. И тут он, к сожалению, вполне прав современная биология немыслима без химии, хотя бы без поверхностного знакомства со строением и функциями некоторых молекул, и в первую очередь — нуклеиновых кислот. Однако больших усилий ему в данном случае затратить не придется. [c.44]

    Исследование химического строения нуклеиновых кислот, начатое Ф. Мишером, далее было продолжено К. А. Косселем (1879 г.), который обнаружил в нуклеиновых кислотах азотсодержащие гетероциклические основания. Первым выделенным гетероциклическим основанием, присутствующим в нуклеиновых кислотах, был гуанин (ранее выделенный из перуанского гуано — помета птиц, ценного азотистого удобрения). Впоследствии из нуклеиновых кислот были выделены тимин (из клеток тимуса быка), цитозин (от греч. ytos — клетка) и аденин (от греч. aden — железа). В результате проведенных исследований русский химик Ф. Левен установил, что в состав нуклеиновых кислот входят азотсодержащие гетероциклические основания (производные пурина и пиримидина), фосфорная кислота и углеводный компонент — рибоза или дезоксирибоза. [c.264]

    Физические и химические свойства нуклеиновых кислот существенно отличаются от свойств белков и полипептидов. Это является следствием совершенно разного химического состава и строения двух указанных классов молекул. В то время как полипептидный остов электрически нейтрален и к нему присоединены боковые цепи приблизительно двадцати типов, остов нуклеиновой кислоты представляет собой сильно заряженный полиэлектролит, который несет боковые группы только четырех (в большинстве случаев) типов. Далее, боковые цепи нуклеиновых кислот проявляют специфическую комплементар-ность (спаривание оснований), которая отсутствует у аминокислот. Эта комплементар-ность частично ответственна за образование спиральных палочкообразных структур как в двух-, так и в одноцепочечных молекулах. Кроме того, заряженный остов затрудняет переход нуклеиновых кислот в компактные глобулярные конформации, столь типичные для белков. [c.287]

    Таким образом, по своему химическому строению нуклеиновые кислоты являются по-лирибонуклеотидами (РНК) и полидезоксирибо-нуклеотидами (ДНК). Соединение нуклеотидных остатков в молекулах РНК и ДНК осуществляется одним и тем же путем сложноэфирными мостиками, образуемыми между парами нуклеотидов остатками фосфорной кислоты. Последние связаны всегда с 3-м углеродным атомом рибозы (или дезоксирибозы) одного нуклеотидного остатка и с 5-м углеродным [c.198]

    Последние годы ознаменовались огромными успехами в изучении строения и функций важнейших биологически активных полимеров. Благодаря развитию новых методов разделения н очистки веществ (различные методы хроматографии, электрофореза, фракционирования с использованием молекулярных сит) и дальнейшему развитию методов рентгеноструктурного анализа и других физико-химических методов исследования органических соединений стало возможным определение строения сложнейших природных высокомолекулярных соединений. Изучено строение ряда белков (работы Фишера, Сейджера, Стейна и Мура). Установлен принцип строения нуклеиновых кислот (работы Левина, Тодда, Чаргаффа, Дотти, Уотсона, Крика, Белозерского) и экспериментально доказана их определяющая роль в синтезе белка и передаче наследственных признаков организма. Определена последовательность нуклеотидов для нескольких рибонуклеиновых кислот. Широкое развитие получили работы по изучению строения смешанных биополимеров, содержащих одновременно полисахаридную и белковую или липидную части и выполняющих очень ответственные функции в организме. [c.53]

    По мере развития новых методов исследования химического состава нуклеиновых кислот было установлено (Чаргафом), что, несмотря на очень сильное различие в относительном содержании разных оснований в различных ДНК, молярное соотношение между аденином и тимином, так же как и между цитозином и гуанином, во всех исследованных ДНК составляет приблизительно 1 1 [10]. На основе этих данных была выдвинута концепция о спаривании оснований в ДНК. Окончательные результаты были получены при исследовании вытянутых нитей ДНК методом реитгеноструктурного анализа. Из этих исследований следовало, что молекулы ДНК почти наверняка имеют строение спирали, состоящей [c.183]


    Другую группу важнейших биологических высокомолекулярных соединений составляют нуклеиновые кислоты, в состав которых входят остатки фосфорной кислоты, пеп-тозановых сахаридов и пуриновых или пиримидиновых оснований. Более подробно строение и химические свойства нуклеиновых кислот рассматриваются в курсе биологической химии. [c.197]

    Несмотря на принципиальную разницу в строении нуклеиновых кислот и нуклеотидных коферментов, из которых одни являются полимерами, а другие к полимерам пе относятся, а также, несмотря на различие в их биологических функциях, оба эти подкласса нуклеотидов целесообразно рассматривать сообща. Это связано с тем, что в основе их химического строения лежат соединения одного и того же типа, которые обычно 1азывают мононуклеотидами. Мононуклеотиды—соединения, в которых на одно пиримидиновое или нуриновое ядро приходится один остаток моносахарида и один остаток фосфорной кислоты. Мононуклеотиды являются мономерами, и.з которых в результате поликонденсации образуются НК, Вместе с те.м мононуклеотиды являются обязательной частью молекулы нуклеотидных коферментов, что и определяет принадлежность коферментов этого типа к классу нуклеотидов, [c.175]

    Биохимия является в основном экспериментальной наукой. Она опирается на арсенал методов, созданных неорганической, органической, аналитической и физической химией. Однако многие из задач, с которыми сталкиваются биохимики, вследствие специфики изучаемых объектов требуют нетрадиционных подходов. В первую очередь это касается изучения биополимеров. Например, химический синтез белков представляет собой повторение десятки или даже сотни раз реакции образования пептидной связи с целью последовательного присоединения на каждой стадии к растущей полимерной цепи определенного аминокислотного остатка. Образование пептидных связей прекрасно отработано и с точки зрения классической органической химии не представляет ни трудности, ни интереса. Но необходимость проводить последовательно множество таких превращений без существенного уменьшения выхода, без повреждения уже созданной на предыдущих этапах синтеза полипептидной цепи ставит свои специфические проблемы, которые решаются оригинальными, разработанными именно для таких задач приемами. Венцом этих приемов является автоматический твердофазный синтез полипептидов. Столь же не традиционно выглядит задача устанобления химического строения биополимеров. Структуры отдельных мономерных звеньев как белков, так и нуклеиновых кислот давно установлены с использованием классических методов органической химии, и задача сводится к тому, чтобы для каждого конкретного биополимера определить, в каком порядке в изучаемой полимерной цепи располагаются разнотипные мономерные звенья. [c.10]

    Углеводно-фосфатный остов во многом определяет конформацию и физико-химические свойства нуклеиновых кислот. Расщепление нуклеиновых кислот различными ферментами связано со спецификой строения углеводио-фосфатной цепи а частности, многие ферменты отличают дезоксирибонуклеиновые кислоты от рибонуклеиновых, концевую фосфатную группу от группы, участаующей в образовании фосфодиэфирной связи, 5 -фосфат от З -фосфата и т. п. [c.391]

    Строение нуклеиновых кислот, их биосинтез и биологическая роль составляют предмет особой науки — молекулярной биологии. Родивщись в недрах химии природных соединений и биохимии, она быстро оформилась в самостоятельную научную дисциплину. Это связано с исключительной важностью нуклеиновых кислот для земной жизни. Они играют ключевую роль в таких фундаментальных процессах, как хранение и воспроизводство биологической информации и ее наследование, деление клеток, биосинтез белка. Здесь, однако, нет возможности углубляться в проблемы молекулярной биологии. Для химии природных соединений существенно то, что важная роль нуклеозидов и нуклеотидов в биохимии живых организмов использована естественным отбором для создания антибиотиков и других биологически активных соединений, действующих по принципу антиметаболитов (см. разд. 6.2). Своим химическим строением молекулы этих веществ лищь незначительно отличаются от нуклеозидов. По этой причине ферменты нуклеинового обмена обманываются , принимая их за истинные субстраты. Резуль- [c.581]

    В то время было известно, что рибонуклеиновые кислоты могут быть гидролизованы щелочью до мононуклеотидов, которые, как тогда считали, были исключительно нуклеозид-3 -фосфатами. Общий план строения нуклеиновых кислот с 2 —З -фосфодиэфирными связями был предложен Левиным и Типсоном [71], причем было сделано допущение, что 2 -связь гораздо менее устойчива, чем З -фос-фоэфирная связь, и обусловливает таким образом образование при щелочном гидролизе исключительно нуклеозид-З -фосфатов. Однако, когда рибонуклеиновую кислоту обработали змеиным ядом (который содержит фосфомоноэстеразу, специфичную для нуклеозид-З -фосфатов), то получили неорганический фосфат и нуклеозиды [72, 73]. Далее, изучение рибонуклеиновой кислоты методом дифракции рентгеновских лучей, проведенное Астбери, позволило предположить, что основной межнуклеотидной связью является скорее 2 —5 или 3 —5, чем 2 —3 [74]. С другой стороны, прямого химического доказательства наличия 5 -фосфатной связи не существовало, и отсутствие 5 -фосфорилированных производных в кислых гидролизатах рибонуклеиновой кислоты, несмотря на их известную стабильность, действительно находилось в явном противоречии с предположением о 2 (или 3 ) — 5 -межнуклеотидной связи. Устойчивость дезоксирибонуклеиновой кислоты (неизбежно 3 —5 -связанной) по отношению к щелочи в противоположность неустойчивости рибонуклеиновой кислоты также указывало, как считали в то время, на различие в типах связи. В противоположность этому при действии панкреатической рибонуклеазы на рибонуклеиновую кислоту получается смесь олигонуклеотидов, устойчивых к перио- [c.372]

    Упражнение Строение нуклеиновых кислот (по H.H. Мушкамбарову). Свободный нуклеотид или нуклеотид в составе нуклеиновой 1шслоты обладает большими кислотными свойствами Нарушится ли целостность полинуклеотидной цепи в результате вышепления азотистого основания из какого-либо нуклеотида По наличию или отсутствию каких химических групп (именно групп, а не таких крупных компонентов, как пентозы или основания) ДНК отличается от РНК Какова связь этих отличий с функцией ДНК  [c.298]

    Историю биохимии принято отсчитывать с конца XVIII в., когда впервые из живых организмов имеющимися в то время методами начали выделять в чистом виде некоторые соединения, такие, как мочевина, лимонная и яблочная кислоты и др. Но в то время еще не было четких представлений о химическом строении этих соединений. Вплоть до середины XX в. биохимия занималась открытием новых классов соединений, образующих живую материю, изучением их структуры и химических превращений. К главным достижениям этого периода можно отнести следующие установление строения важнейших биополимеров (белков и нуклеиновых кислот) и выяснение общих путей химических превращений многих соединений in vivo. [c.21]

    Американский химик (уроженец России) Фебус Аарон Теодор Левин (1869—1940) работал в другом направлении. Он изучал строение нуклеотидов — тех блоков, из которых построены гигантские молекулы нуклеиновых кислот. (В настоящее время установлено, что нуклеиновые кислоты управляют химическими процессами, протекающими в организме человека.) Правильность выводов Левина полностью подтвердили результаты работы шотландского химика Александра Робертуса Тодда (род. в 1907 г.), который в 40-х — начале 50-х годов нашего века синтезировал ряд нуклеотидов и родственных им соединений. [c.126]

    Огромное значение для молекулярной биологии последнего десятилетия имеет развитие генетической инженерии (возникшей в 1972—1973 гг. П. Берг, П. Лобан, С. Коэн и Г. Бойер) и методов работы с рекомбинантными ДНК в сочетании с методами химического синтеза крупных фрагментов ДНК. В результате сделались доступными для исследования индивидуальные гены и регуляторные генетические элементы, было стимулировано изучение ферментов биосинтеза и обмена нуклеиновых кислот. Благодаря этому после 1977 г. были обнаружены мозаичное (экзон-интронное) строение генов, явление сплайсинга и ферментативной активности у РНК, усилители ( энхансеры ) экспрессии генов, многие регуляторные белки, онкогены и онкобелки, мобильные генетические элементы. Возникла белковая инженерия, которая позволяет получать новые, не существующие в природе белки. Молекулярная биология начала оказывать существенное влияние на развитие биотехнологии, медицины и сельского хозяйства. [c.9]

    Выбор между специалистом по белкам и специалистом по нуклеиновым кислотам не составил особого труда. Хотя только около половины массы бактериального вируса приходится на ДНК (другая половина — белок), опыты Эвери указывали на ДНК как на основной генетический материал. Вот почему выяснение химического строения ДНК могло стать важным шагом к пониманию того, как воспроизводятся гены. Тем не менее в отличие от белков о химии ДНК было известно очень немногое. Ею занимались считанные химики, и генетику практически не за что было ухватиться, кроме того факта, что нуклеиновые [c.21]

    Разработаны методы синтеза полинуклеотидов — простейших моделей нуклеиновых кислот. Эти методы послужили основой для синтеза олигонуклеотидов с заданной последовательностью нуклеотидов. Использование химических и биохимических методов синтеза дали возможность Каране получить полинуклеотид, соответствуюший активному фрагменту дезоксирибонуклеиновой кислоты. Все эти достижения в области исследования строения, функций и синтеза биополимеров позволили на другом, новом—молекулярном уровне подойти к изучению жизненных процессов. Есть все основания предполагать, что в ближайшее время нас ждут большие и интересные открытия в мире познания самых сложных и тонких областей жизнедеятельности организма (деятельности нервной системы, межклеточного взаимодействия, явлений иммунитета и т. д.). [c.54]

    Важное биологическое значение нуклеиновых кислот состоит в том, что они осуществляют хранение и передачу наследственной имформации, а также определяют синтез нужных белков в клетке я его регуляцию. По химическому строению нуклеиновые кислоты представляют собой линейные неразветвлет1ые) цепочки, составленные из остатков большого числа нуклеотидов указанных выше типов. Как и для белков, для нуклеиновых кислот характерна первичная и вторичная структура. Важнейшей характеристикой данной нуклеиновой кислоты является ее первичная структура, т. е. последовательность чередования входящих в ее состав четырех типов нуклеотидов. На стр. 442 и 443 для иллюстрации приведены фрагменты цепочек ДНК и РНК- [c.441]

    Эти два подкласса четко различаются как по строению входящих в них нуклеотидов, так и по их биологической функции. Нуклеиновые кислоты (обычно сокращенно обозначаемые НК) являются полимерными соединениями с кочень высоким молекулярным весом, достигающим 6 500 000—13 000 000. В зависимости ст того, содержат ли они в своем составе в качестве углеводного комионеита рибозу плп дезоксирибозу, онп называются рибонуклеиновыми кислотами (РНК) или дезоксирибонуклеиновыми кислотами (ДНК). Необходимость такого раздсотеиия диктуется не только различиями в химическом поведении РР1К и ДНК, но и различием их биологических функции. Н клениовые кислоты в комплексах с белками, известных под общи.м названием нуклеопротеидов, играют ключевую роль в процессах жизнедеятельности самых различных организмов. ДНК являются тем первичным химическим материалом, который лежит в основе сложного и далеко еще полностью не выясненного процесса передачи наследственных признаков при делении клетки, а следовательно, и всех процессов, связанных с размножением. Хотя о механизме такой передачи, механизме в чисто химическом смысле этого слова, еще мало что известно, однако решающая роль ДНК в процессе передачи биологического кода не вызывает никакого сомнения и может считаться в настоящее время экспериментально установленным фактом. [c.174]

    Как было указано ранее, нуклеиновые кислоты делятся на дезоксирибонуклеиновые (ДНК), являюцщеся полимерами (а точнее продуктами поликонденсации) дезоксирибонуклеотидов, и рибонуклеиновые (РНК) — полимеры рибонуклеотидов. Строение, а также физико-химическая характеристика и биологическая функция ДНК и РНК различны, и поэтому эти вопросы будут рассматриваться отдельно для каждого вида полимера. [c.246]


Смотреть страницы где упоминается термин Нуклеиновые кислоты Химическое строение нуклеиновых кислот: [c.57]    [c.96]    [c.51]    [c.59]    [c.40]    [c.249]    [c.11]    [c.579]    [c.174]    [c.255]   
Смотреть главы в:

Начало биохимии -> Нуклеиновые кислоты Химическое строение нуклеиновых кислот




ПОИСК





Смотрите так же термины и статьи:

Кислота строение

Нуклеиновые кислоты

Нуклеиновые кислоты строение

Строение химическое

Химический состав и строение нуклеиновых кислот

Химическое строение нуклеиновых кислот

Химическое строение нуклеиновых кислот



© 2025 chem21.info Реклама на сайте