Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Гравиметрические методы определения кобальта

    Нитрозо-2-нафтол. 1-Нитрозо-2-нафтол был одним из первых органических реагентов для количественного определения металлов. Реагент был впервые предложен Ильинским [131, 133—135] для количественного осаждения и определения кобальта. Свойства реагента и его соединений с кобальтом и другими металлами были в дальнейшем подробно изучены. В настоящее время 1-нитрозо-2-нафтол рекомендуется как один из наиболее пригодных реагентов для определения кобальта в разнообразных материалах [299, 384, 442, 549, 641, 688, 689, 703, 822, 843, 925, 1408, 1434]. 1-Нитрозо-2-нафтол применяется для определения кобальта гравиметрическим, титриметрическим и фотометрическим методами, а также для отделения кобальта от других металлов. [c.102]


    Гравиметрические методы определения кобальта в большинстве случаев мало селективны. Методы отделения мешающих элементов рассмотрены в гл. III. [c.88]

Рис. 3-32. Прибор для определения воды гравиметрическим методом с применением бромида кобальта [146] Рис. 3-32. Прибор для <a href="/info/18643">определения воды</a> <a href="/info/10508">гравиметрическим методом</a> с <a href="/info/1743371">применением бромида</a> кобальта [146]
    Титриметрические и гравиметрические методы определения кобальта при анализе цветных металлов применяются редко. [c.199]

    ГРАВИМЕТРИЧЕСКИЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ КОБАЛЬТА [c.88]

    Описан улучшенный гравиметрический метод определения кобальта, при котором реагент синтезируется непосредственно в анализируемом растворе из 2-нафтола и нитрита натрия (определение по методу возникающих реактивов) [825]. [c.103]

    Нередко прихо ится определять сравнительно большие количества кобальта в сталях. Поэтому применяются наряду с фотометрическими и полярографическими методами определения также титриметрические и гравиметрические методы. [c.186]

    Желтый осадок кобальтинитрита калия образуется в уксуснокислом растворе в присутствии больших количеств никеля, железа, цинка, марганца и многих других элементов, имеет постоянный состав и применяется для гравиметрического определения содержания кобальта. Осадок легко растворим в минеральных кислотах. Полученный раствор можно использовать для определения содержания кобальта фотометрическим методом. [c.71]

    Разработан [1350] метод совместного гравиметрического определения кобальта и никеля после определения ннкеля диметилглиоксимом содержание кобальта вычисляют по разности. [c.97]

    Определение кобальта в сталях и чугунах гравиметрическими методами [109]. Сталь или чугун растворяют в концентрированной соляной кислоте и окисляют двухвалентное железо [c.196]

    Гравиметрический метод с использованием хлорида кобальта(П) для определения в рафинированных сахарах общего количества воды и свободной воды приведен в гл. 3. [c.351]

    Существенным недостатком следует считать малую растворимость самого диметилдиоксима в воде. Было предложено [1002] использовать щелочной раствор диметилдиоксима. Избирательность фотометрического определения никеля такая же, как и гравиметрического метода. Однако такие элементы, как кобальт и медь, образующие довольно хорошо растворимые в воде соединения, мало препятствующие выделению осадков диметилдиоксимата, все же экстрагируются в виде диоксиматов. [c.103]


    Электрогравиметрический метод анализа заключается в выделении определяемого элемента в виде металла на предварительно взвешенном катоде, после чего электрод с осадком взвешивают и определяют количество металла. Этим способом можно определять кадмий, медь, никель, серебро, олово и цинк. Некоторые вещества могут окисляться на платиновом аноде с образованием нерастворимого плотного осадка, пригодного для гравиметрического определения. Примером может служить окисление свинца(П) до диоксида свинца. Кроме того, в аналитической химии электролиз можно использовать для разделений ионов известен способ, когда легко восстанавливающиеся ионы металлов осаждаются на ртутном катоде, а трудно восстанавливающиеся катионы остаются в растворе. Таким способом алюминий, ванадий, титан, вольфрам, щелочные и щелочноземельные металлы можно отделить от железа, серебра, меди, кадмия, кобальта и никеля, которые выделяются на ртути. [c.413]

    Альварес [162] использовала для определения оранжевый толуольный экстракт комплекса палладия с 1-нитрозо-2-нафто-лом. Интенсивность окраски при экстракции комплекса из нейтральных или слабокислых растворов выше, чем при экстракции из сильнокислых или щелочных растворов. Комплекс палладия с реагентом устойчив в 1,5 н. кислоте, но разрушается в сильнокислых и щелочных растворах. Избыток реагента тоже переходит в слой толуола, однако его можно удалить, не разрушив комплекса палладия, если к окрашенному раствору добавить едкий натр. Окраска толуольного экстракта довольно устойчива, ио при стоянии она бледнеет, особенно если экстракцию проводят из сильнокислых растворов. Максимум светопоглощения измеряют при 420 ммк. Закон Бера выполняется. Данных относительно влияния других платиновых металлов не приведено, однако, зная поведение их при гравиметрическом определении палладия этим реагентом, можно предположить, что метод в достаточной степени избирателен. Предложен способ устранения влияния меди и хрома. Никель почти не мешает, а кобальт и железо мешают определению. Однако железо можно замаскировать фторидом натрия. [c.225]

    Ненадкевич и Салтыкова [236] разработали гравиметрический метод определения кобальта, основанный на осаждении цианидного комплекса трехвалентного кобальта нитратом серебра [c.96]

    Осадки аналогичного состава дают также катионы ртути, меди,. кадмия, никеля, цинка, марганца, хрома, свинца, серебра и железа, поэтому все эти ионы необходимо удалить. Образование осадка [ o( 5H5N)4] r207 было использовано (1182] для разработки гравиметрического метода определения кобальта (также никеля и кадмия). Осадок отфильтровывают через стеклянный фильтр и промывают раствором, содержащим немного бихромата калия и пиридина, а затем этанолом и абсолютным эфиром, после чего высушивают 15 мин. в вакуум-эксикаторе и взвешивают. Фактор пересчета на кобальт — 0,09968. [c.97]

    Гравиметрические методы определения. Красный осадок соединения кобальта (III) с 1-нитрозо-2-нафтолом примерного состава Со(СюНб02 )з-пН20 образуется в слабокислых (pH 3.8—4,0), нейтральных и аммиачных растворах. Образовавшееся соединение при подкислении не разрушается. Мешают осаждению кобальта серебро, висмут и олово. Железо и вольфрам можно маскировать фторид-ионом. Не мешают осаждению кобальта равные по содержанию количества никеля, алюминия, кадмия, кальция, магния, бериллия, хрома, свинца, марганца, цпнка, сурьмы, мышьяка, ртути. В присутствии больших количеств никеля проводят переосаждение кобальта. После высушивания при 115°С состав соединения становится постоянным (п = 2), и оно применимо для гравиметрического определения содержания кобальта. В некоторых случаях отделение Со от сопутствующих элементов проводят осаждением в виде кобальтинитрита (гексанитрокобальтата III) каль я  [c.71]

    Соединения с органическими кислотами и спиртами. Комплексы с органическими кислотами имеют значение для фотометрических, полярографических, гравиметрических, титримет-рических методов определения кобальта, а также для маскировки. [c.25]

    Применяются также гравиметрические методы определения взвешиванием в виде С03О4, Со504 или металлического кобальта после выделения электролизом. Широко используются спектральные методы определения кобальта [768]. [c.187]

    Гравиметрический метод определения 0,1 г таллия в 100 мл раствора с помощью хромата калия является одним из наиболее точных [18]. К 100 мл раствора добавляют 3 мл аммиака (2 1), нагревают до 70—80° С, вводят избыток 10%-ного раствора хромата калия, охлаждают и отстаивают несколько часов. Полученный после фильтрования через тигель Гуча осадок промывают 1%-ным раство-"ром осадителя, затем 50%-ным этиловым спиртом, сушат при 120— 130° С и взвешивают в виде хромата таллия. Помехи от серебра, ртути и меди устраняют добавлением цианида калия. 50%-ный раствор сульфосалициловой кислоты подавляет влияние галлия, индия, алюминия, железа и меди. Винная кислота с достаточным количеством аммиака предотвращает влияние цинка, кадмия, никеля, кобальта и молибдена. [c.154]


    Ион кобальта (II) характеризуется способностью образовывать растворимые комплексные соединения в избытке аммиака, экстрагирующиеся органическими растворителями комплексные соединения с роданид-ионом. Селективными реактивами, позволяющими определять кобальт в присутствии других элементов (меди, никеля, железа), являются оксинитрозосоедпнения. В зависимостп от содерл<ания кобальта в анализируемом объекте (оно колеблется от десятых долей до десятков процентов) применяют титриметрические, фотометрические, полярографические и атомно-абсорбционные методы. Сравнительно редко прибегают к гравиметрическим п люминесцентным методам определения содержания кобальта. [c.68]

    Определение кобальта в никеле гравиметрическим методом й виде С03О4 после осаждения 1 -нитрозо-2-нафтолом [109]. Навеску никеля растворяют в азотной кислоте, раствор дважды выпаривают с соляной кислотой досуха. К солянокислому раствору прибавляют окись цинка, пока не прекратится выпадение осадка. Осадок отфильтровывают через сухой фильтр и в аликвотной части фильтрата осаждают кобальт 2%-ным уксуснокислым раствором 1- итрозо-2-нафтола. Осадок отфильтровывают, промывают холодным 5%-ным раствором соляной кислоты [c.202]

    Колориметрический метод определения влаги основан на гидратации кобальтовых солей. Например, безводный бромид кобальта (И) имеет бледно-серую окраску, переходящую при образовании гексагидрата в темно-красную (см. гл. 6). Гардинер и Кейт [146] использовали дибромид кобальта (II) в новом гравиметрическом методе, позволяющем определять свободную и связанную воду в почти сухих кристаллах рафинированного сахара. В первом варианте анализа свободную, или поверхностную, воду экстрагируют безводным хлороформом и затем осаждают в форме СоВг2 6Н.,0. Во втором варианте безводный дибромид кобальта непосредственно смешивают с тонкоразмолотой пробой (удельная поверхность 3500 см /г) под слоем хлороформа или четыреххлористого углерода. При этих условиях дибромид реагирует со связанной водой in situ. Данный метод не является абсолютным и требует построения градуировочных графиков по известным количествам воды в присутствии сухой порошкообразной сахарозы. При этом градуировочные графики зависимости количества воды от количества гидратированного дибромида кобальта оказались линейными. Данные Гардинера и Кейта [146] показали, что высушивание в сушильном шкафу при 105 °С вызывает термическое разложение сахара. Считается, что более точно соответствуют количеству свободной влаги результаты, получаемые при высушивании в вакуумном сушильном шкафу при 70 С или методом экстракции и осаждения дибромидом кобальта. Испарение в вакууме и прямое определение воды с дибромидом кобальта позволяет до- [c.188]

    При определении воды в сахаре Хилл и Доббс [85 ] помещали запаянную ампулу с образцом в колбу, которую затем вакуумировали. Ампулу разбивали и образец нагревали. Выделившаяся влага конденсировалась во второй вакуумированной колбе известного объема. Конденсат испаряли и измеряли давление пара. Сахар в аппарате можно измельчать, что позволяет определять общее содержание воды и содержание поверхностной воды. (При анализе рафинада и сахарного песка данный метод дает лучшие результаты, чем гравиметрический метод Гардинера и Кейте с использованием бромида кобальта, описанный в гл. 3.) Стадия конденсации позволяет устранить влияние адсорбированных газов, которые выделяются вместе с водой при нагревании образца. [c.548]

    Атомная абсорбция зарекомендовала себя как более точный и быстрый метод определения следовых элементов в речных, артезианских и озерных водах, чем трудоемкие и длительные гравиметрический, волюмометрический или колориметрический. Многие металлы присутствуют в природных водах на уровне п-10 %. В таких случаях удовлетворительные результаты при определении никеля и кобальта достигнуты путем предварительного двухстадийного концентрирования соосаждением на гидроокиси железа и использования в качестве комплексообразователя пирролидиндитиокарбамата аммония и органического экстрагента метилизобутилкетона [11]. [c.213]

    В качестве примеров можно привести определение соотношения Со S в лабильном металлорганическом соединении с помощью комбинации полярографического определения кобальта в одной аликвотной части и титриметрического определения серы в другой аликвотной части минерализата одной пробы ЭОС. Комбинацией полярографии и спектрофотометрии было определено соотношение Ni Р, амперометрическим титрованием одним титрантом были определены соотношения Zr S, Fe Pb. Принцип сравнения абсолютных количеств продуктов минерализации двух элементов можно использовать и для безнавесочного определения соотношения С Н в гравиметрическом анализе веществ, когда взятие навесок вызывает те или иные затруднения. Например, описан метод определения С Н в низкокипящих углеводородах без применения капилляров и без взвешивания пробы [192], путем сравнения найденных гравиметрически количеств СО2 и Н2О, образовавшихся при сожжении вещества в кислороде. [c.226]

    ИЛИ продуктов его разложения, особенно если окисление кобальта осуществлялось самим реагентом или если имело место взаимодействие между добавленным окислителем и реагентом. Поэтому осадок необходимо прокаливать при 800—900 °С до С03О4. Но так как состав окиси часто не соответствует стехиометрическому, метод определения не очень точен и целесообразнее определение кобальта заканчивать при помощи другого гравиметрического или титриметрического метода. [c.178]

    Селективность метода может быть значительно повышена при использовании маскирующих агентов. Такими маскирующими агентами могут быть комплексующие агенты (цианид, тартрат и ЭДТА), которые при добавлении к раствору пробы предотвращают реакцию между оксияом и мешающим иояом металла. Так, при гравиметрическом определении алюминия такие элементы, как кадмий, кобальт, [c.249]

    Перекись водорода и перекись натрия препятствуют полному осаждению циркония на холоду при кипячении в их присутствии цирконий полностью осаждается. При осаждении гидроокиси циркония щелочами отделяются следующие элементы мюминий, галлий, цинк, молибден, вольфрам, ванадий, бериллий, мышьяк и Сурьма. В присутствии карбонатов отделяется уран. Для этой цели к щелочи прибавляют I—2 г Na Og. Прибавление перекиси водорода улучшает отделение. В осадке с цирконием находятся железо, титан, марганец, хром, кобальт, никель, медь, кадмий, серебро, индий, таллий, торий и редкоземельные элементы. Магний и щелочноземельные металлы при достаточном содержании карбонатов также полностью осаждаются. Этот метод может иметь некоторое значение для отделения циркония от молибдена, вольфрама, ванадия, алюминия и бериллия. По данным Руффа [700], бериллий не отделяется щелочью количественно, так же как и алюминий, особенно в присутствии больших количеств аммонийных солей. Осаждение гидроокиси циркония аммиаком может применяться при гравиметрическом определении циркония. Но этот метод используется лишь в случае отсутствия примесей, осаждаемых аммиаком. [c.53]


Смотреть страницы где упоминается термин Гравиметрические методы определения кобальта: [c.89]    [c.101]    [c.102]    [c.166]    [c.191]    [c.135]    [c.30]   
Смотреть главы в:

Аналитическая химия кобальта -> Гравиметрические методы определения кобальта




ПОИСК





Смотрите так же термины и статьи:

Кобальт определение

Кобальт определение методом ААС

Определение гравиметрически



© 2025 chem21.info Реклама на сайте