Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Абсорбция массопередачи коэффициент

    По обычным формулам массопередачи коэффициент абсорбции К вычисляют с учетом скорости газа по формуле [c.67]

    Сравнение абсорберов Черкасского и Новомосковского химкомбинатов, работающих при вполне сопоставимых условиях, показывает, что насадочный абсорбер превосходит тарельчатый абсорбер по скорости абсорбции и коэффициенту массопередачи почти в 2 раза. Особенно заметно преимущество абсорбера Черкасского химкомбината при оценке массообменного аппарата по величине [c.143]


    Уравнение (6.15) является основным для расчета аппаратов для насыщения воды воздухом. При невозможности количественно оценить площадь поверхности соприкосновения фаз пользуются так называемым объемным коэффициентом абсорбции (массопередачи), выражающим количество переносимого вещества во всем объеме рабочей части аппарата. В этом случае основное расчетное уравнение имеет вид [c.141]

    Р — поверхность абсорбции (массопередачи) р — коэффициент массоотдачи от газа к жидкости  [c.187]

    При исследовании механизма абсорбции в любых газожидкостных системах наибольшую трудность вызывает расшифровка кинетики абсорбции, в частности достаточно адекватный учет диффузии вещества в газовой и жидкой фазах. Задача заключается в таком моделировании диффузионных процессов, протекающих как внутри фаз, так и на границе раздела, которое бы позволило достаточно полно отразить факторы, влияющие на массоотдачу. Известные модели переноса вещества (модели Уитмена — Льюиса, Хигби, Данквертса и др. [6, 28, 29]) не только труднореализуемы в связи со сложными решениями математических уравнений, но и не учитывают многие из этих факторов. На кинетику абсорбции влияют коэффициент диффузии, физические свойства газов и жидкостей, термодинамические параметры процесса, концентрация компонентов, направление массопередачи, вибрация и пульсация, эффект Марангони и т. д. Многочисленные исследования влияния этих [c.69]

    При обработке результатов исследований по абсорбции ЫНз на ситчатой тарелке учтено влияние жидкой фазы на коэффициент массопередачи. Коэффициент массоотдачи получен расчетным путем из уравнения аддитивности (2). [c.46]

    В первом приближении задача может быть значительно упрощена, если предположить, что для процессов растворения, как и для процессов экстракции и абсорбции, объемный коэффициент массопередачи ка прямо пропорционален скорости подачи дисперсной фазы и мало зависит от скорости подачи сплошной фазы и степени насыщения. В этом случае приведенные коэффициенты массопередачи (5.16) можно считать постоянными. [c.201]

    Как уже указывалось в 3-1, в ряде работ подверглось критике допущение о пропорциональности частных коэффициентов массопередачи коэффициентам молекулярной диффузии. Так, по данным Кишиневского [39, 123—125], коэффициенты массопередачи при абсорбции не зависят от природы газа, т. е. от коэффициента молекулярной диффузии. Влияние последнего, по мнению Кишиневского и Серебрянского [39], начинает сказываться лишь при очень малых числах оборотов мешалки. В соответствии с этим авторы высказали соображение о доминирующей роли турбулентной диффузии. Однако наличие зависимости величины частных коэффициентов массопередачи от коэффициентов молекулярной диффузии в настоящее время уже не вызывает сомнения [16—33, 103—106, 126, 127]. Тот факт, что различными авторами получена различная степень зависимости частных коэффициентов массопередачи от коэффициентов молекулярной диффузии в значительной мере объясняется пленочно-пенетрационной моделью, изложенной в 3-2. [c.71]


    Экспериментально исследовано применение режима подвижной пены для различных процессов абсорбции, десорбции и теплопередачи. Получены опытные данные по теплопередаче между газом и жидкостью, конденсации водяных паров из воздуха в воду, абсорбции аммиака водой и десорбции его из фильтровой жидкости содового производства. Проводились также производственные и лабораторные опыты по теплопередаче в различных условиях, испарению воды, абсорбции окислов азота нитрозой. На основе опытов определялись коэффициенты тепло- и массопередачи, а также коэффициенты полезного действия полки (к. п. д.), т. е. степень теплопередачи при теплообмене, коэффициент извлечения— при абсорбции и коэффициент обогащения — при десорбции газов. [c.433]

    Диффузионно-кинетическая область, в которой химическое связывание поглощаемого компонента происходит в основном в узком слое жидкости, прилегающем к поверхности раздела фаз. Расчет хемосорбции для данного случая можно выполнять по уравнениям физической абсорбции с коэффициентом массопередачи, вычисленным из уравнений (1,180). [c.62]

    Коэффициент абсорбции — массопередачи [c.319]

    При определении коэффициента абсорбции — массопередачи нужно учитывать следующие обстоятельства. [c.319]

    Первая и последняя фазы обычно протекают быстро, и временем на их прохождение можно пренебречь. Наоборот, диффузия через ламинарные пленки протекает медленно, поэтому ее скоростью определяется общая скорость всего процесса. Иначе говоря, коэффициент абсорбции — массопередачи определяется общим сопротивлением диффузии Я, которое равно сумме двух последовательных сопротивлений Гг+Гж (/"г и Гж — соответственно сопротивления диффузий через газовую и жидкостную пленки). [c.320]

    Формулы для расчета коэффициента абсорбции — массопередачи приведены в специальных пособиях. Одна из простейших формул приведена на с. 436. [c.320]

    Ориентировочно значение коэффициента абсорбции — массопередачи для хорошо растворимых газов [c.320]

Рис. 173. График для определения коэффициента абсорбции — массопередачи Рис. 173. График для <a href="/info/1584367">определения коэффициента абсорбции</a> — массопередачи
    От этой точки пересечения ведем горизонтальную линию до оси ординат, на которую нанесены значения коэффициента абсорбции — массопередачи, для рассматриваемого примера находим его равным 0,61 г/(м -ч-Н/м ) [0,081 кг/(м2-ч-мм рт. ст.)]. [c.321]

    Методы расчета технологических параметров абсорбционного процесса, очевидно, должны быть основаны на уравнении массопередачи. При этом специфика процесса отражается в коэффициенте массопередачи, надежное же их определение встречает непреодолимые трудности, особенно при многокомпонентной абсорбции. В связи с этим для инженерной практики в 30-х годах Крейсером — Брауном был разработан метод расчета процесса абсорбции, в основе которого лежат понятия о теоретической тарелке и коэффициентах извлечения компонентов. [c.77]

    Размеры оборудования. При расчете размеров абсорбционного оборудования поперечное сечение аппарата и его высота определяются раздельно. Строго говоря, все существующие для этого методы расчета являются по существу эмпирическими и зависят от конструкции и внутреннего устройста абсорбера. Поперечное сечение насадочных колонн находят гидравлическим расчетом в условиях захлебывания, а сечение тарельчатых колонн—путем расчета в условиях уноса жидкости газом или на основании выбранного коэффициента полезного действия ступени. Ни один из этих методов расчета не связан непосредственно со скоростью процесса абсорбции, за исключением того, что поперечное сечение определяет линейную скорость потоков, которая в свою очередь влияет на скорость массопередачи. [c.182]

    Во многих работах, посвященных химически активным абсорбентам, процесс абсорбции рассматривали так же, как и при чисто физической абсорбции, но с переменными коэффициентами массопередачи в жидкой фазе, зависящими от химического равновесия, концентрации и природы реагента. Типичной является работа Шервуда и Пигфорда , касающаяся абсорбции двуокиси углерода растворами углекислого натрия. По мере протекания абсорбции карбонат превращается в бикарбонат. Равновесие этой системы определяется следующим чисто эмпирическим уравнением  [c.187]

    Эта система дифференциальных уравнений была численно проинтегрирована при помощи большой электронно-счетной машины. Некоторые из полученных результатов представлены на рис. УИ-8—УП-П. Для сравнения приведены данные по реакции первого порядка и необратимой реакции второго порядка. На графиках по оси ординат отложены не коэффициенты массопередачи в условиях чисто физической абсорбции, а поправочные коэффициенты к ним. [c.193]


    Это положение справедливо и для абсорбции, сопровождающейся химической реакцией первого порядка. Однако из рассмотренных работ по кинетике реакций второго порядка следует, что коэффициент массопередачи является функцией движущей силы. ,  [c.193]

    Характерной особенностью работ, посвященных повышению эффективности улавливания пыли в полых колоппах, является стремление обеспечить достаточно густое заполнение всего объема аппарата каплями диспергированной жидкости, причем одновременно стремятся избежать слияния капель в сплошной поток [100]. По данным этой работы, наиболее эффективны равномерно распределенные крупные капли = = 0,8- 1,0 мм при их объемной концентрации около 17о-Можно отметить, что и в модельных опытах по абсорбции хорошо растворимых газов при подобных условиях достигались очень высокие коэффициенты массопередачи. [c.186]

    Основные цели, преследуемые дальнейшим обсуждением, заключаются в анализе механизма хемосорбции, в рассмотрении влияния химических и физических свойств систем на скорость абсорбции и в расчете этой скорости для различных условий. Ниже будет также показано, как результаты измерения скорости абсорбции могут быть использованы для определения таких физико-химических параметров, как константы скорости реакции и коэффициенты диффузии, а также для нахождения коэффициентов массопередачи и поверхности контакта фаз. [c.16]

    IX-1-3. Сопротивление массопередаче в жидкой фазе и межфазная поверхность. Для оценки влияния химической реакции на скорость абсорбции газа необходимо знать величины и ав отдельности. Величина объемного коэффициента kiO. может быть легко измерена путем абсорбции с учетом сопротивления в газовой фазе или при полном устранении сопротивления со стороны газа в таких измерениях. Если независимо от этого определить а, то по величинам к а [c.207]

    Если, например, абсорбционный процесс попадает в режим мгновенной реакции , то метод непригоден, так как коэффициент ускорения не зависит от (см. раздел V-3). Желательно, а может быть и необходимо, подбирать такую комбинацию газа и жидкости, чтобы скорость абсорбции была одной и той же во всех точках колонны и не зависела от количества абсорбированного газа. Кроме того, лучше не иметь дела с системами, в которых имеется заметное сопротивление массопередаче в газовой фазе. [c.211]

    Видимо, по массопередаче в газожидкостных псевдоожиженных слоях было опубликовано всего лишь два исследования. В нервом из них измеряли скорость абсорбции водой двуокиси углерода из смеси ее с азотом. В качестве твердой фазы использовали частицы кремнезема (эквивалентный диаметр 0,22 мм) и стеклянные шарики (0,5 и 0,8 мм). Количественных корреляций, например, в виде коэффициентов массообмена предложено не было, но можно отметить ряд качественных особенностей процесса. Скорость абсорбции повышается с ростом скорости жидкости для частиц всех размеров и понижается с увеличением размера частиц для всех скоростей жидкости. Скорости абсорбции были ниже измеренных в аналогичной газожидкостной системе, не содержаш ей твердых частиц. Эти выводы отчасти подтверждаются рассмотренными ранее данными о коалесценции пузырей .  [c.673]

    Уравнение (VI-112) по исследованиям Черткова [209] применимо и к другим щелочным растворам, в частности, к растворам сульфит-бисульфита аммония (при рН б). Опыты проводились в башнях диаметрами 0,8 и 1 м [209], а также в промышленном абсорбере диаметром 6 м [210]. Все эти аппараты были насажены кольцами размером 50 мм в укладку, причем имелись три последовательно соединенные ступени абсорбции. Объемный коэффициент массопередачи при скорости газа 1 —1,3 м/сек и плотности орошения 2—4 м/ч составлял около 60 кмоль-м -ч -бар . Было установлено, что Кро возрастал с увеличением концентрации NHg в растворе (Сд) и уменьшался с повышением в нем отношения so . Анализ указанных исследований показал [209], что с повышением отношения sOj/ b (в частности, в первых ступенях абсорбции) в соответствии с уменьшением pH раствора возрастает доля сопротивления жидкой фазы, что и приводит к снижению К.ри-Это снижение можно определить, исходя из полученной при проведении опытов в трубке с орошаемыми стенками зависимости [211], по которой Кр пропорционален химической емкости раствора в степени 0,16. [c.478]

    Определение коэффициента абсорбции (массопередачи) затруднено вследствие отсутствия опытных данных для содового производства. Наиболее правильный путь — отыскание К из уравнения массопередачи (ф-ла 10,4). Для этого в уравнение следует подставить все остальные величины, взятые для действующей станции абсорбции содового завода (по данным техотчета). Таким путем можно оценить К- [c.391]

    Очистка газа проводится в две ступени. Поступающий на очистку газ попадает в сепаратор для отделения сопутствующего ему конденсата. Выходящий с верха сепаратора 1 газ направляется в низ абсорбционной колонны 2, где, поднимаясь вверх, он контактирует на тарелках (или насадке) с 15—17 %)-ным водным раствором моноэтаноламина, подаваемого в колонну сверху. В колонне имеется 22—24 ситчатых тарелки (или 15 м насадки из колец Рашига). Пасадочный абсорбер превосходит тарельчатый по скорости абсорбции и коэффициенту массопередачи в два раза. Температура в колонне 2 25—40 °С, давление 1,47—1,57 МПа. Частично очищенный газ выводится из колонны сверху и подается в низ абсорбционной колонны 9. Па верх этой колонны вводится 10—12 %-ный раствор МЭА. Устройство колонны 9 аналогично устройству колонны 2 температура в колонне 9 20—40°С, давление 1,37— 1,47 МПа. Если нужно снизить содержание диоксида углерода до 0,001 % (об.), давление на II ступени очистки следует повысить до 2,45—2,94 МПа. [c.91]

    При постоянной величине коэффициента абсорбции и при высоких парциальных давлениях СОг величина 1,25/сг-лол/(ч-л Х Хатм) должна соответствовать либо условиям быстрой реакции, либо сосредоточению сопротивления массопередаче в газовой фазе, если поведение при низких парциальных давлениях соответствует процессу мгновенной реакции. Величина 1,25, действительно, намного ниже рассчитанной при допущении условии быстрой реакции или условий сосредоточения сопротивления массопередаче в газовой фазе и приближенно соответствует величине, которая может быть рассчитана при сосредоточении сопротивления массопередаче в жидкой фазе при условиях медленной реакции. [c.133]

    Результаты расчетов коэффициентов массопередачи на основе каждой из этих теорий имеют близкие значения. В связи с этим для описания хода процесса абсорбции с одновременной химической реакцией обычно используется теория пограничных пленок, дающая возможность более простого математического решения. Однако для анализа явления все чаще применяется пенетрацион-ная модель. Большим достоинством такого подхода к процессу переноса массы, осложненного одновременным протеканием химической реакции, является возможность определения величины поверхности контакта фаз на основе результатов исследований хода абсорбции. [c.251]

    Исследованию и расчету колонных химических реакторов и процессам абсорбции и десорбции в колонных аппаратах посвящена об-щирная литература. Больщинсгво работ относится к экспериментальному изучению конкретных систем и получению эмпирических формул дпя расчета аппаратов. В ряде работ применяются пленочная и пенетрационная модели массопередачи с химическими реакциями, изложенные в гл. 6. Поскольку, однако, эти модели разработаны для случая постоянства концентрации хемосорбента и абсорбтива (экстрактива) в сплошной и дисперсной фазах, их применение дпя расчета прямо- и противоточных аппаратов затруднено. Обычно при расчете колонных аппаратов полагают, что коэффициент ускорения массообмена вследствие протекання химических реакций постоянен по высоте колонны. Это допущение может привести в ряде случаев к существенным ошибкам. [c.286]

    Величина На—безразмерный критерий, называемый числом Хатта величина k.L=DJxi —коэффициент массоотдачи через жидкостную пленку без учета химической реакции величина = Hafe z.—соответствующий коэффициент с учетом протекания реакции. Таким образом, число Хатта является поправочным коэффициентом, позволяющим определить коэффициент массопередачи при абсорбции химически активным поглотителем, если известен коэффициент массопередачи при абсорбции химически инертным поглотителем. [c.191]

    Для проектирования и расчета оросительных устройств важна оценка влияния числа точек орошения насадки аппарата, основанная на измерении ко ффи-циентов массопередачи. Такие работы проводились исследователями обычно в колоннах небольшого диаметра. Наиболее полно этот вопрос изучен в работах Н. М. Жаворонкова и В. М. Рамма [17, 86]. В опытах определяли влияние числа точек орошения п на объемный коэффициент абсорбции Л г аммиака водой из смеси его с воздухом в колонне диаметром 500 мм, насаженной регулярно уложенными и засыпанными навалом кольцами Рашига разного размера. В этой же колонне проводили ()пыт1,1 но влиянию п при десорбции СОг из воды воздухом. Были испытаны регулярно уложенные слои насадки колец Рашига 50x50 мм высотой Я=1600 и 6000 мм. Для оценки эффективности числа точек п введен условный коэффициент ухудшения у, показывающий, насколько степень абсорбции при данном числе точек ниже, [c.50]

    Онда К-,Нагасава М.,Такахаси М., Кагаку когаку, 31, 716 (1967). Коэффициенты массопередачи в насадочной колонне при абсорбции, сопровождаемой химической реакцией второго порядка. [c.277]

    Пример 6. Определить коэффициенты массоотдачи, общую высоту единицы переноса и коэффи1,иент массопередачи для процесса абсорбции в насадочной К0л(1нне, рассмотренного в Примерах 3 и 5. [c.52]

    При записи уравнений математического описания процесса абсорбции использованы следующие условные обозначения информационных переменных а —удельная поверхность насадки — диаметр насадки О —расход газа Л — удерживающая способность насадки Н — высота ячейки полного перемеши-. вания К — общий коэффициент массопередачи Kv — объемный коэффициент массопередачи L — расход жидкости т. — коэффициент фазового равновесия N — общее число ячеек полного перемещивания Шг — скорость газа, рассчитанная на полное сечение колонны а)инв — скорость газа в точке ицверсии х — концентрация компонента в жидкой фазе у — концёнтрация компонента в газовой фазе 2 —общая высота насадочного слоя 2 —текущее значение высоты наса-дочного слоя. Индексы вх — вход вых —выход г —газ ж —жидкость инв — инверсия 1, 2,. .., п — номер ячейки полного перемешивания О — начальное значение р — равновесная величина ст — статическая величина. [c.89]


Смотреть страницы где упоминается термин Абсорбция массопередачи коэффициент: [c.320]    [c.44]    [c.14]    [c.458]    [c.458]    [c.285]    [c.287]    [c.288]   
Технология серной кислоты (1985) -- [ c.214 ]




ПОИСК





Смотрите так же термины и статьи:

Абсорбция коэффициенты масоотдачи и массопередачи

Абсорбция эффективные коэффициенты массопередачи

Коэффициент массопередачи

Коэффициенты массоотдачи и массопередачи при абсорбции

Массопередача

Массопередача массопередачи

Определение коэффициента массопередачи в процессе абсорбции



© 2025 chem21.info Реклама на сайте