Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Коэффициент и скорость переноса

    Поверхностные явления играют ключевую роль в мембранных процессах и существенны для всех типов мембран, кроме газодиффузионных. Абсолютные значения коэффициента проницаемости и селективности мембран, температурная и барическая зависимость этих характеристик, во многом определяются закономерностями сорбционного процесса на поверхности и в матрице мембраны. Обычно допускается, что скорость сорбции намного превышает скорость переноса массы и распределение вещества между сорбированной и объемной фазами равновесно. Поэтому ограничимся анализом условий сорбционного равновесия и разделительных характеристик равновесного сорбционного процесса. [c.42]


    Кроме колоночной хроматографии, широко реализуемой в разнообразных вариантах, получила распространение и плоскостная хроматография, особенно ее разновидность — бумажная хроматография. Она выполняется на специальной хроматографической бумаге, обладающей изотропностью по всем направлениям, равномерной плотностью и толщиной. На такую бумагу можно нанести осадитель или вещество с ионообменными свойствами, и тогда ее можно использовать для осадительной или ионообменной хроматографии. Хроматографическая бумага весьма гигроскопична, в ее порах и капиллярах при нормальных условиях удерживается более 20% влаги. Процесс разделения на такой бумаге напоминает распределительную хроматографию, в которой неподвижной фазой является вода. Процесс проводят в замкнутом сосуде с растворителем. На бумагу наносят разделяемую смесь и один край листа опускают в растворитель. Под действием капиллярных сил растворитель движется вдоль листа и захватывает разделяемые вещества, скорость переноса которых зависит от их коэффициентов [c.182]

    В действительности, в процессе абсорбции, особенно в статических условиях, и при небольших скоростях жидкости и газа газообразная и жидкостная пленки, очевидно, имеются. Однако такой подход к обоснованию методики расчета абсорбционных аппаратов, по нашему мнению, не способствует изучению процесса абсорбции. Для расчетов по теплопередаче частные коэффициенты или коэффициенты теплоотдачи необходимы, так как между участвующими в теплообмене теплоносителями находится разделяющая их твердая стенка, обладающая определенным термическим сопротивлением, и числовые значения коэффициента теплопередачи зависят от этого термического сопротивления стенки и от теплообмена между теплоносителями и стенкой. В диффузионных процессах обе фазы находятся в непосредственном соприкосновении, и поэтому общий коэффициент массопередачи для каждой пары жидкости и газа зависит исключительно от их свойств и скорости протекания жидкости и газа, и нет никакой необходимости вводить частные коэффициенты. Тем более, что практически опытным путем непосредственно величины этих частных или пленочных коэффициентов определить не представляется возможным. Гораздо проще и надежнее сразу определить опытным путем общий коэффициент массопередачи в зависимости от условий проведения процессов, как коэффициент скорости переноса массы из одной фазы в другую. [c.592]


    В этой связи отметим, что величина энергии активации для случая, когда скорость контролируется только диффузией, может служить признаком, позволяющим отличить случай пористого продукта от случая, не рассмотренного в настоящей главе, когда продукт компактен и когда диффузия происходит в массе твердого реагента. В первом случае температурный коэффициент скорости переноса вещества мал, так как он соответствует диффузии в газообразной или жидкой фазе, заполняющей поры. Во втором случае, вообще говоря, он велик, потому что энергия активации для диффузии в твердом состоянии значительна. [c.185]

    Сечения и коэффициенты скорости переноса энергии (тушения возбужденных состояний) при соударениях атомов и молекул изменяются в очень широких пределах от значений, характерных для столкновений бесструктурных частиц, до величин, близких к газокинетическим. [c.81]

    Величина В характеризует изменение амплитуды, а Ф является фазовым сдвигом. Как следует из равенств (111.53) и (111.54), параметры В шФ являются функциями непосредственно измеряемых величин, таких как скорость потока, длина слоя, угловая частота, а также коэффициента продольного переноса, значение которого необходимо найти. [c.59]

    Радиальный перенос. Коэффициент радиального переноса значительно зависит от профиля скорости потока или, [c.65]

    Пусть в реакторе со стационарными изотермическими условиями протекает реакция нулевого порядка W = к. При этом считаем, что коэффициент продольного переноса и объемная скорость потока по высоте и сечению аппарата fie меняются концентрация в данном сечении потока постоянна. [c.72]

    Ре > О величина коэффициента продольного переноса значительно сказывается на распределении времени пребывания компонентов реагирующей массы в реакторе и, следовательно, скорости процесса. [c.75]

    Скорость переноса компонентов Кг и (скорость их молекул по отношению к движущемуся материалу) будет меньше скорости газового потока. Объясняется это тем, что молекулы разделяемых компонентов частично связаны с движущимся вниз материалом. В случае твердого адсорбента скорость переноса зависит от коэффициента адсорбции, в случае жидкой пленки на инертном носителе — от коэффициента распределения. Изменяя соответствующим образом объемную скорость газового потока и скорость движения твердого материала, можно добиться того, чтобы значение скорости движения твердого материала лежало между скоро- [c.34]

    Расчетные соотношения для коэффициентов диффузии получены на основе представлений об аналогии этих -процессов в пористых и непористых двухфазных мембранах [6]. Дисперсная фаза в виде кристаллитов и других плотных структурных образований играет ту же роль, что непроницаемый скелет пористой мембраны — на межфазной поверхности возможна сорбция растворенного газа из дисперсионной среды форма и распределение плотных включений в матрице оказывают влияние на скорость переноса массы. [c.80]

    Уравнение для X с учетом связи между диффузией и сквозным потоком выводится так же, как и предыдущее уравнение, определяющее скорость переноса диффундирующего вещества при = 0. Для отыскания скорости переноса в случае >>0 необходимо использовать найденные выше коэффициенты пересчета. В результате уравнение переноса от поверхности раздела в непрерывную фазу примет вид  [c.210]

    Число возможных режимов работы ячейки при заданных определяющих параметрах и условиях Т ,. равно числу решений нелинейной системы алгебраических уравнений (VI.136), (VI.137). Эти уравнения формально эквивалентны хорошо исследованным уравнениям процесса на равнодоступной поверхности изолированного зерна (см. раздел 111.3), отличаясь от них только заменой истинных коэффициентов тепло- и массопередачи а и р на эффективные (меньшие) величины а и р. Скорость переноса вещества к поверхности ячейки меньше, чем скорость подачи вещества к равнодоступной поверхности изолированного зерна, так что переход ячейки от кинетического к диффузионному режиму должен происходить при больших числах Ке или меньших температурах потока. [c.250]

    Для одного и того же значения фактора динамического состояния двухфазной системы / коэффициенты турбулентного переноса массы и энергии Zp — величины одного и того же порядка, поэтому устанавливается следующая пропорциональность между коэффициентом массопередачи К, перепадом давления ДР,, и скоростью потока w  [c.247]

    Движущая сила процесса массопереноса — разность концентраций компонентов в фазах системы. В абсорбционных и ректификационных процессах, где имеется жидкая и паровая фазы, скорость перехода любого компонента из одной фазы в другую определяется относительной концентрацией его в соответствующей фазе. Если концентрация компонента в паровой фазе меньше, чем в жидкости, то происходит его испарение, если наоборот,—конденсация паров этого компонента и переход его в жидкую фазу. При повышенных давлениях, при условиях, далеких от идеального состояния, пользуются понятием летучести. Силы, тормозящие тепло- и массоперенос, можно охарактеризовать с помощью коэффициента тепло- (массо-) передачи и величины поверхности, на которой осуществляется этот процесс. Скорость переноса обратно пропорциональна величине поверхности. [c.125]


    Введением коэффициента тепло- (массо-) передачи преследуются две цели привести к одной системе единиц обе части уравнения и учесть все факторы, которые вместе с концентрацией и величиной поверхности определяют скорость переноса массы и тепла. Этот коэффициент является эмпирическим числом, основанным на экспериментах, в результате которых с помощью переменных, характеризующих данный процесс, уточняется его величина. Как в области теплопередачи, так и в области массопередачи значительная часть исследований посвящена характеристике именно этих коэффициентов, выраженных в единицах измеряемых переменных. [c.125]

    Эти видоизмененные коэффициенты массопередачи были использованы далее в соответствующим образом скорректированных методах расчета процессов, скорость которых лимитируется скоростью переноса массы. [c.380]

    Скорость переноса массы М в аппарате, имеющем высоту Я и площадь поперечного сечения 5, можно выразить через коэффициент массопередачи Ку и среднюю движущую силу [c.226]

    Коэффициент массоотдачи характеризует скорость переноса массы в пределах одной фазы его величина зависит от гидродинамических и физико-химических факторов, а также типа и размеров аппарата. [c.29]

    Изучение продольного перемешивания в пустотелых барботажных колоннах показало, что коэффициент турбулентного переноса 1>пр может изменяться в очень широких пределах (от 5-10 до 0,5 м /с). Такое изменение обусловлено многими факторами и, в первую очередь, скоростью барботирующего газа и диаметром колонны, что логически обосновано и подтверждается структурой зависимости (П. 10). [c.56]

    При разработке математической модели было принято, что направление потока является ассиметричным, колебания осевой скорости в радиальном направлении незначительны и могут быть представлены усредненным значением осевая дисперсия и диффузия, являющиеся следствием градиента концентрации, учитываются в виде соответствующих дифференциальных членов радиальная диффузия и перенос капель жидкости выражаются в виде транспортных уравнений и эмпирических корреляций, в то время как коэффициенты пленочного переноса используются для описания процесса переноса. [c.397]

    При использований уравнения (1Х-58) для расчета аппаратуры необходимо знать общий коэффициент скорости переноса в процессе диализа растворенного вещества. В случае отсутствия экспериментальных данных этот кинетический коэффициент можно оценить, зная величины коэффициентов диффузии веществ в растворе и свойства используемой мембраны. По аналогии с теплопередачей полноё сопрбтивление переносу массы через мембрану можно выразить как сумму сопротивлений пленок жидкости с каждой стороны мембраны и сопротивления самой мембраны  [c.625]

    Ранее опубликовано значительное число работ, в которых коэффициенты массообмена вычисляются на основании решений задач нестационарной сорбции и ионообмена в предположении, что скорость процесса определяется переносом вещества из потока к поверхности зерен. Большинство из этих работ приводит к зависимостям, удовлетворительно согласующимся с формулами (IV. 71) и (IV. 72). Подробнее эти работы здесь не рассматриваются, поскольку процессы сорбции и ионного обмена гораздо сложней нестационарного теплообмена и указанная выше согласованность результатов может быть истолкована лишь как подтверждение того, что в исследованных процессах скорость переноса действительно определяется массообменом на поверхности зерен. [c.161]

    Уравнение (6-61) показывает, что коэффициент р переноса компонента может быть выражен измеримыми величинами. Решение проблемы, естественно, будет труднее, когда вдоль оси х скорости у не постоянны, а имеют распределение (х). Этот сложный случай исследовал Вязовов [9]. Полученное им значение р в сущности одинаково со значением р, полученным Хигби  [c.73]

    Майр и соавторы [33] разработали метод анализа экспериментальных данных для равновесного процесса, при котором бинарная смесь пропускается через длинную колонну, заполненную неподвижным и первоначально сухим силикагелем. Вслед за этой смесью вводится жидкость, полностью вытесняющая оба компонента из адсорбента. По аналогии с перегонкой при полном орошении эти авторы рассчитали коэффициент разделения Л для различных систем. Они также расширили аналогию, вычислив высоты, эквивалентные одной теоретической тарелке. Такие высоты нельзя применять, если лимитирующил фактором процесса является скорость переноса. [c.156]

    Здесь А — концентрация растворенного газа у поверхности раздела между жидкостью и газом, соответствующая условиям равновесия с парциальным давлением газа в газовой фазе. Пока будем считать, что парциальное давление газа одинаково во всех точках рассматриваемого элемента пространства. Влияние на это парциальное давление других газов, обладающих низкой растворимостью, будет рассмотрено в разделеУ-13. Символом а обозначена поверхность контакта между газом и жидкостью, заключенная в единице объема системы, — коэффициент физической массоотдачи в жидкой фазе. Величина Н представляет собой среднюю скорость переноса газа через единицу поверхности действительная же скорость массопередачи может меняться как от точки к точке, так и со временем. Значение Л соответствует средней концентрации растворенного газа в массе жидкости. [c.99]

    Ионы Na" и 1 в реакции не участвуют. Распределение различных ионов в пленке показано на рис. V-8. Для каждого иона можно записать уравнение типа уравнения (1,31), выражающее скорость переноса этого иона как функцию от подвижностей и локальных концентраций и концентрационных градиентов всех присутствующих ионов. Для упрощения принято, что градиенты концентрации неизменны (например, для иона он равен р/б во всех точках), а значения концентрации каждого иона в уравнении (1,31) взяты усредненными в пленке, например р/2 — для Н +. Таким образом, можно записать четыре уравнения типа (1,31) для скоростей переноса всех четырех участвующих ионов, выраженных через концентрации т, п, р, q, S, толщины пленок б и б и подвижности ионов. Учитывая, что Ru+ = R - = —Roh- = (скорость абсорбции НС1) и i Na+ = о, можно избавиться от неизвестных т, s и б и получить выражение для Rb/p через подвижности ионов и qln и qlp. Скорость физической абсорбции хлористого водорода водой с той же толщиной пленки б была бы pDh i/6 отсюда коэффициент ускорения Е, показывающий, во сколько раз реакция ускоряет абсорбцию, выражается отношением R8Ip)IDh i- [c.143]

    Установки. Продувочные газы таких циклических процессов, как синтез аммиака и переработка нефти, содержат жидкости в дисперсном состоянии, поэтому обычно В промышленных установках выделения водорода обязательно предусматривается стадия подготовки газа перед подачей в мембранные аппараты. Температуру процесса поддерживают такой, чтобы, с одной стороны, не допустить конденсацию паров воды на поверхности мембран, а с другой — увеличить скорость массопереноса водорода через мембрану. По мере обеднения исходной смеси водородом увеличивается парциальное давление углеводородов в газе, создаются условия для конденсации части углеводородов на поверхности мембран и, как следствие, увеличивается общее сопротивление процессу переноса. Во избежание этого процесс необходимо проводить при температуре на 10—11° С выше точки росы обедненного водородом газового потока. Однако, на самом деле, выгодно поддерживать более высокую температуру, так как это увеличивает производительность установки (повышением коэффициента скорости массопереноса через мембрану). Влияние температуры на скорость переноса водорода через полимерную мембрану (на примере асимметричной ацетатцеллю-лозной мембраны) представлено на рис. 8.1 [32]. [c.273]

    Кунии и Левеншниль разделили процесс переноса на две стадии от пузыря к облаку циркуляции и от облака к эмульсии (непрерывной фазе). Авторы утверждают, что уравнение (VII,65) выражает объемную скорость обмена только между пузырем и облаком. Скорость переноса для второй стадии они вычислили исходя из пенетрационной теории Хигби , согласно которой за отрезок времени, необходимый пузырю для неремеш ения на высоту, равн5 ю его диаметру, происходит нестационарная диффузия. Далее был приближенно рассчитан средний за этот отрезок времени коэффициент массонереноса от облака к непрерывной фазе  [c.290]

    Гидравлическое сопротивление характеризуется трением о поверхность насадки, разностью давлений на ее лобовой и кормовой частях и энергией, расходуемой на турбулиза-цию газового следа. В ламинарной области гидравлическое сопротивление обусловлено трением, которое в свою очередь определяется переносом количества движения по направлению к поверхности тела с увеличением трения возрастает и скорость переноса вещества. Поэтому при работе в ламинарной области желательно применять тела с высоким коэффициентом сопротивления. Шаровая форма тел по сравнению с цилиндром и вытянутым эллипсоидом эффективнее их и имеет в 2 раза больший коэффициент сопротивления. [c.481]

    Такм образом, задача вычисления скорости теплопередачи к пропану сводится к нахождению скорости переноса тепла через пленку газа с коэффициентом теплоотдачи а без учета теплового излучения. [c.66]

    Свойства турбулентного переноса, однако, не являются физическими свойствами среды. Они зависят от скорости течения, расстояния от твердых стенок, геометрической формы трубы, помещенного в поток тела, скорости свободной струи и т. д. Коэффициенты турбулентного переноса 13 каждом конкретном случае должны определяться на основе зкснернментальных данных. Однако в любом случае турбулентные потоки превосходят молекулярные (Аг> >а), но оказываются меньше максимальных молекулярных потоков (Д2<а) [c.72]

    С. Пример расчета. Рассмотрим печь диаметром 6 м, в которой сгорает 0,15 кг/с газообразного топлива с наименьшей теплотворной способностью 5-10 Дж/кг, расход воздуха составляет 2,7 кг/с, воздух и топливо поступают при 500 К. Заготовка нри 900 К покрыта слоем шлака 6 мм с коэффициентом теплопроводности 2 Вт/(м-К) и степенью черноты 0,48. Свод из огнеупорных материалов имеет площадь 50 м . Топочные газы имеют теплоемкость 1200 Дж/(кг-К) и степень черноты =0,25, соответствующую расчетной средней длине пути луча при оцениваемом значении температуры. Необходимо рассчитать Т , Тх и скорость переноса теплоты в заготовку. В пренебрежении конвекцией задача сводится к случаю 2 с газообразным источником, адиабатной поверхностью и стоком. Начнем с расчета АхЦГх-е по уравнению (33). Получим следующую величину (полагая 1-2 2-2)  [c.499]

    Группа yVo/Ut представляет собой отношение скоростей переноса частиц вперед и вдоль стенки, группа Uxd/v — число Рейнольдса для частицы рч/р — относительная плотность частиц по отношению к среде, d — мера объема частиц utju — отношение конечной скорости частиц к скорости сдвига, характеризующее действие внешней силы, и Djv — обратное отображение числа Шмидта [уравнение (VII.26)], представляющее собой отношение коэффициента молекулярного массопереноса и момент количества движения. Если пренебречь силой тяжести или внешними силами и концентрационными эффектами, уравнение (IV.51) упрощается до выражения [c.216]


Смотреть страницы где упоминается термин Коэффициент и скорость переноса: [c.480]    [c.625]    [c.230]    [c.15]    [c.178]    [c.65]    [c.77]    [c.79]    [c.125]    [c.467]    [c.168]    [c.161]    [c.249]    [c.380]    [c.104]    [c.74]   
Газожидкостные хемосорбционные процессы Кинетика и моделирование (1989) -- [ c.115 ]




ПОИСК





Смотрите так же термины и статьи:

Коэффициент переноса

Коэффициент скорости



© 2024 chem21.info Реклама на сайте