Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Арилгалогениды реакции

    Присоединение реактивов Гриньяра к изоцианатам приводит после гидролиза к N-замещенным амидам. Выше реакция изображена так, что присоединение происходит к группе С = 0, но изоцианат-ион представляет собой резонансный гибрид, поэтому присоединение можно изобразить и по связи = N. В любом случае гидролиз приводит к амиду. Это очень хорошая реакция, и она может быть использована для синтеза производных алкил- и арилгалогенидов. Реакция проводилась также с алкиллитиевыми соединениями [364]. Изотиоцианаты дают N-замещенные тиоамиды, [c.378]


    Реакция. Диазотирование первичных ароматических аминов азотистой кислотой, превращение солей диазония в арилгалогениды (реакция Зандмейера - введение С1, Вг, I, СК, 8СК реакция Шимана-введение Р [16]) в последовательности  [c.177]

    Обнаружение и разделение алкил- и арилгалогенидов. Реакция с нитратом серебра. К 50 мг испытуемого вещества прибавляют [c.33]

    В арилгалогенидах наличие -/-эффекта приводит к возникновению дефицита электронной плотности бензольного кольца, что сказывается в понижении их реакционной способности в реакциях электрофильного замещения по сравнению с бензолом. Под влиянием —/-эффекта в большей степени обедненными электронной плотностью должны оказаться орто- и пара-положен я и электрофильные реагенты должны атаковать мета-положения, где дефицит электронной плотности меньше. Однако кроме сильного —/-эффекта атомы галогенов обладают также +М-эффектом, обусловленным наличием неподеленных пар р-электронов. Этот эффект сравнительно невелик, но он обнаруживается в галогенбензолах даже в стационарном состоянии молекулы. Это подтверждается уменьшением дипольных моментов галогенбензолов по сравнению с соответствующими алкилгалогенидами  [c.338]

    Протекание этих реакций по механизму 5n1 можно полностью исключить. Известно, что гетеролиз связи С—Hal в молекуле арилгалогенида с образованием катиона Аг+ и иона На1 требует очень большой затраты энергии. Присутствие в субстрате нитрогрупп, способствующих фиксации положительного заряда на одном атоме углерода, а не его рассредоточению внутри карбокатиона, делает это допущение еще менее вероятным. [c.402]

    Большое препаративное значение имеет реакция замены ди-азогруппы на группу СЫ, позволяющая ввести в органическое соединение еще один атом углерода. В известной степени она является аналогом синтеза Кольбе, позволяющего получать нитрилы алифатических кислот из алкилгалогенидов и цианида калия. По причинам, обсужденным ранее (см. разд. 2.1), в арилгалогенидах заменить атом галогена на нуклеофильные реагенты, в том числе иа группу СН, удается только в жестких условиях, поэтому эта реакция, проводимая в сравнительно мягких условиях, находит практическое применение при синтезе нитрилов ароматических кислот. [c.459]

    Алкилгалогениды вступают в реакцию с некоторыми металлами, образуя металлоорганические соединения [313]. Чаще всего в качестве металлического реагента используют магний и реакция служит общим методом получения реактивов Гриньяра [314]. Активность галогенидов уменьшается в ряду 1>Вг> >С1. Реакция применима ко многим алкилгалогенидам, первичным, вторичным и третичным, а также к арилгалогенидам, однако в случае арилхлоридов требуется использование тетрагид- [c.464]


    Кроме получения реактивов Гриньяра, важное применение рассматриваемая реакция находит для превращения алкил- и арилгалогенидов в литийорганические соединения [327] она также была проведена и для многих других металлов, например Na, Ве, Zn, Hg, As, Sb и Sn [328]. Для натрия заметным побочным процессом является реакция Вюрца (реакция 10-87). В случае калия образуется сложная смесь продуктов с очень низким содержанием RK [329]. Иногда, если реакция между галогенидом и металлом слишком медленная, можно использовать сплав металла с калием или натрием. Показательным примером служит получение тетраэтилсвинца из этилбромида и сплава РЬ—Na. [c.466]

    При добавлении солей галогенидов в больших концентрациях продуктом реакции является арилгалогенид, но скорость не зависит от концентрации добавляемой соли. [c.9]

    С арилгалогенидами, имеющими два орто-заместителя, реакция не должна была бы происходить и действительно не происходит [25]. [c.11]

    В реакцию с активированными арилгалогенидами вступают также и другие серосодержащие нуклеофилы  [c.22]

    Сак и в алифатическом ряду, фторпроизводные оказываются (тными к действию металлов, иод-, бром- и хлорпроизводные ируют с последними достаточно энергично Сак было показано ранее на примере синтеза бифенила, (иевые производные настолько активны, что в обычных ВИЯХ не могут быть выделены и сразу же по мере образова-реагируют с исходным арилгалогенидом (реакция Вюрца) Три взаимодействии с магнием в эфире иод- и бром-ы дают соответствующие магнийорганические соединения лораренов получить последние удается только в тетрагидро-1не Реакция протекает по тому же механизму, что и в случае [лгалогенидов (см разд 2 3 1) [c.215]

    Такой же процесс активации имеет место, повидимому, в реакциях замещения арилгалогенидов (реакции Ульманна), которые вызываются следами меди или медных солей например [c.189]

    Особое значение медно-бронзового порошка в синтезах диарилов из арилгалогенидов (реакция Улльмана) более удовлетворительно объясняется появлением нейтральных радикалов на поверхности металла, нежели промежуточным образованием нестабильных медь-органических соединений. [c.229]

    Аналогично четыреххлористому кремнию с реактивом Гриньяра реагируют четырехфтористый и четырехиодистый кремний [33, С20, С44, С68, С69, С82, Н45), однако скорость реакции меньшая. В зависимости от характера алкил- или арилгалогенида реакция протекает с образованием три- или тетразамещенного производного. Уже тризамещенное производное относительно устойчиво по отношению к гидролизу. Реакцию проводят путем введения газообразного четырехфтористого кремния в эфирный раствор галоидного магнийорганического соединения [810, 848, 1483, 1484, 1506, 1815, 2062]. [c.61]

    Магнийорганические соединения. Магнийорганиче-ские соединения, открытые Гриньяром (1900), относятся с давних пор к наиболее часто используемым металлоорганическим соединениям. Они получаются при прямом замещении галогена на металл. При этом необходимо применять апротониые растворители, содержащие атом кислорода с неподеленной парой электронов. Классическим растворителем такого рода является диэтиловый эфир. Однако Норман (1954) показал, что при использовании малоактивных галогенидов (винил- и арилгалогенидов) реакцию лучше проводить в тетрагидрофуране. В случае первичных и вторичных алифатических хлоридов и бромидов реакция идет легко. Аллилгалогениды при этой реакции имеют тенденцию димеризоваться [G.R.E. S.O., стр. 154]. Вследствие малой устойчивости третичных галогенидов реакции с ними проводят в тетрагидрофуране. [c.222]

    Классификация и номенклатура, строение, физические свойства алкилгалегенидов. Индукционные и мезомерные эф кты в алкщ1- и арилгалогенидах. Методы получения и их практическое использование. Химические свойства алкилгалогенидов. Понятие о кинетике, порядке и молекулярности реакции. Механизм бирщлеку-лярных и мономолекулярных реакций, [c.190]

    Литийорганические соединения можно получать обменшой реакцией н-бутиллития углеводородами и с алкил- или арилгалогенидами в безводном растворителе  [c.196]

    Винил- и арилгалогениды менее реакционноспособны, чем алкилгалогениды. Винилбромид реагирует с магнием только в растворе тетрагидрофурана (реакция Нормана), а при реакции бромбензола обычно используют активацию иодом или бромом. Особенно трудно реагируют с магнием арилгалогени- [c.255]

    Естественно, винил- и арилгалогениды, у которых из-за +М- и —/-эффектов атома галогена и винильной (арильной) группы заметно погашается положительный заряд на атакуемом атоме углерода и связь С—X становится более прочной, в обычных условиях не вступают в реакции нуклеофильного замещения галогена с магнийорганическими соединениями. Например, в 2,3-дибромпропене-1 происходит избирательное замещение лишь одного атома брома, находящегося в аллильном положении  [c.270]

    Наличие мезомерного эффекта сказывается и на уменьшении длины связи С—Hal (в H3 I / = 0,177 нм, а в СеНзС 1= = 0,170 нм). Из-за наличия +Л1-эффекта в арилгалогенидах наблюдается сравнительная трудность замещения атомов галогенов, обусловленная упрочнением связи Аг—Hal. Несмотря на небольшое значение, -ьМ-эффект галогенов оказывает решающее влияние на направление вхождения заместителя при реакциях электрофильного замещения. [c.338]


    Арилгалогениды, особенно арилхлориды, вступают в реакцию труднее соответствующих алкилпроизводных. Магнийорганические jiro-риды не образуются. [c.343]

    Если R — первичная группа, то RX может быть только винил-или арилгалогенидом, причем винильная группа R взаимодействует с сохранением конфигурации. Следовательно, карбокатион не является интермедиатом в этой реакции. Если R — третичная группа, то R может быть первичной алкильной, а также винильной или арильной группой. Это один из немногих методов синтеза сложных эфиров из третичных спиртов. Наилучшие результаты достигаются при использовании алкилиодидов, немного хуже реакция идет с алкилбромидами. В присутствии амина, по крайней мере в некоторых случаях, возможно непосредственно выделить амид. [c.226]

    Реакция сульфирования находит очень широкое применение, и в нее были введены многие типы ароматических углеводородов (включая конденсированные циклические системы), арилгалогениды, простые ароматические эфиры, карбоновые кислоты, ацилированные амины, кетоны, нитросоединения и сульфокислоты [139]. Фенолы также можно успешно сульфировать, но реакция может осложняться конкурентной атакой по кислороду. Для сульфирования часто применяют концентрированную серную кислоту, но можно использовать также дымящую серную кислоту, 50з, С18020Н и другие реагенты. Как и в случае нитрования (реакция 11-2), имеется широкий ассортимент реагентов различной реакционной способности для проведения реакции как с высокоактивными, так и с инертными субстратами. Поскольку эта реакция обратима (см. реакцию 11-44), то для доведения ее до конца может потребоваться внешнее воздействие. Однако при низких температурах обратная реакция идет очень медленно, поэтому прямое взаимодействие оказывается практически необратимым [140]. Серный ангидрид реагирует значительно быстрее, чем серная кислота,— с бензолом взаимодействие идет практически мгновенно. Побочно часто образуются сульфоны. При введении в реакцию сульфирования субстратов, содержащих в кольце четыре или пять алкильных заместителей или атомов галогена, обычно происходят перегруппировки (см. реакцию 11-42). [c.341]

    Другой метод состоит в обработке ароматического субстрата соединением переходного металла, таким, как Рс1(0Ас)2 [235] или трифтороацетат таллия (III) [236]. При использовании последнего реагента в некоторых случаях происходит региоселек-тивное сочетание. Иногда арилирование проводилось обработкой ароматических субстратов особенно активными арилгалогенидами, чаще всего арилфторидами. Арилирование по свободнорадикальному механизму см. т. 3, реакции 14-16—14-20. [c.355]

    Выходы продукта в этой реакции колеблются от почти ничтожных до 90 и даже 100%. Другой метод получения арилнитри-лов основан на реакции арилникелевого(О) комплекса 29 с цианидом натрия [296]. Соединение 29 получают из арилгалогенидов и комплекса Н1(РКз)4 [297]. [c.461]

    Мономолекулярный механизм SnI никогда не наблюдался с достаточной степенью определенности для арилгалогенидов и арилсульфонатов, даже в случае активных молекул [14]. Этот механизм характерен для реакций солей диазония [15]  [c.8]

    Некоторые реакции ароматического нуклеофильного замещения явно отличаются по характеру от реакций, происходящих по механизму ЗкАг (или SnI). Речь идет о реакциях замещения арилгалогенидов, не содержащих активирующих групп. Для их протекания требуется более сильное основание, чем обычно. Самое интересное заключается в том, что входящая группа не всегда занимает положение, освобождаемое уходящей группой. Это было изящно продемонстрировано на примере реакции Ь С-хлоробензола с амидом калия  [c.10]

    Арилгалогениды можно превратить в фенолы только при наличии в молекуле субстрата активирующих групп или в исключительно жестких условиях [63]. При замещении на гидроксил уходящими группами могут также служить нитрогруппа [64], азид, ЫКз+ и т. п. Если реакцию проводят при высокой температуре, наблюдается кине-замещение, что указывает на ариновый механизм [65]. Из неактивированных арилгалогенидов фенолы удалось получить ири обработке бораном и таким металлом, как литий, с последующим окислением щелочным Н2О2 [66]. [c.20]

    В случае ароксидных нуклеофилов реакция промотируется солями меди [73а], в присутствии которых нет необходимости в наличии активирующих групп. Эта реакция служит методом получения диариловых эфиров и носит название синтез эфиров по Ульману [74] ее не следует путать с более важной реакцией сочетания Ульмана (реакция 13-16). Несмотря на присутствие солей меди, порядок реакционной способности типичен для нуклеофильного замещения [75]. Поскольку арилоксимедные (I) реагенты ArO u взаимодействуют с арилгалогенидами с образованием простых эфиров, было высказано предположение, что они являются интермедиатами в синтезе эфиров по Ульману [c.21]

    Действительно, реакцией РОСи или АгОСи с арилгалогенидами можно получить эфиры с высоким выходом [77]. Из активированных арилгалогенидов при обработке триарилфосфа-том (АгО)зРО можно получить диариловые эфиры [78]. [c.22]

    С помощью реакций, аналогичных реакциям 13-1 и 13-4, можно получить арилтиолы и тиоэфиры [79]. Активированные арилгалогениды обычно дают хорошие выходы, но побочные реакции могут оказаться существенными. Под действием SAr-можно получить диарилсульфиды. В реакцию с SAr вступают даже неактивированные галогениды, если при этом используются такие полярные апротонные растворители, как диметилформамид [80], диметилсульфоксид [81] или гексаметилфосфортриамид [82], хотя по своему механизму процесс остается нуклеофильным замещением. Сульфиды можно также получить с хорошими выходами при обработке неактивированных арилгалогенидов SAr или SR в присутствии каталитических количеств (Pli3P)4Pd [83]. Диарилсульфиды получаются с высокими выходами при обработке неактивированных арилиодидов ArS в жидком аммиаке при облучении [84]. По-видимому, в этом случае реакция идет по механизму SrnI. [c.22]


Смотреть страницы где упоминается термин Арилгалогениды реакции: [c.610]    [c.247]    [c.247]    [c.398]    [c.443]    [c.204]    [c.210]    [c.177]    [c.187]    [c.191]    [c.193]    [c.388]    [c.456]    [c.21]    [c.23]    [c.23]   
Органическая химия (1974) -- [ c.763 , c.784 ]




ПОИСК





Смотрите так же термины и статьи:

Арилгалогениды



© 2024 chem21.info Реклама на сайте