Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение вязкости масел при низкой температуре

Рис. 1. Вискозиметр капиллярный для определения вязкости масла Л-1 при низкой температуре. Рис. 1. <a href="/info/15407">Вискозиметр капиллярный</a> для <a href="/info/633945">определения вязкости масла</a> Л-1 при низкой температуре.

    Вязкость изоляционных масел обычно определяется с помощью капиллярных вискозиметров Оствальда-Пинкевича (ГОСТ 33-53). Для определения вязкости при низких температурах используются капиллярные вискозиметры Уббелоде под давлением и ротационные вискозиметры (ГОСТ 1929-51). Наряду с этим используются также относительные или условные оценки величины вязкости. Условная вязкость определяется в вискозиметре Энглера как отношение времени истечения 200 мл масла при температуре испытания ко времени истечения 200 мл дистиллированной воды при 20° С (ГОСТ 6258-52). Условная вязкость выражается в условных градусах ВУ. [c.12]

    При правильном подборе противоизносных и противозадирных присадок малый износ деталей трансмиссии будет обеспечиваться в определенных пределах независимо от вязкости масла. Вместе с тем вязкость трансмиссионных масел должна быть оптимальной, так как высоковязкие масла, обеспечивая более устойчивую граничную пленку, улучшая герметичность уплотнений, приводят к значительным потерям на трение, особенно в условиях низких температур. [c.183]

    В области низких температур, как показали многочисленные исследования, смазочные масла приобретают структуру и некоторые другие особенности, в частности характеризуются пределом текучести, пластичностью, тиксотропностью или аномалией вязкости, свойственными дисперсным системам. Результаты определения вязкости таких масел зависят от того, проводится ли предварительно механическое перемешивание, а также от скорости истечения или от обоих факторов одновременно. Масла, обладающие структурой, не подчиняются закону течения ньютоновских жидкостей, согласно [c.54]

    Таким образом, определение вязкости в каких-либо условных единицах того или иного вискозиметра еще не дает строгих оснований для точных пересчетов. Между фактическим внутренним трением, выражаемым в абсолютных единицах вязкости, и условными единицами имеется лишь очень приблизительная зависимость. Эта зависимость носит очень сомнительный характер в случае малых вязкостей между тем в области технического применения смазочных масел сплошь и рядом бывает температура, достаточно высокая для того, чтобы вязкость масла упала до очень низких величин. Технические приборы, за очень малыми исключениями, весьма грубы и не дают возможности судить о вязкости нри высоких температурах, между тем во многих случаях вязкость интересна именно нри этих условиях. Поэтому вполне понятна наметившаяся в последние годы в нефтяной промышленности тенденция к переходу от условных единиц вязкости к абсолютным. [c.317]


    Прокачиваемость моторных масел при низкой температуре в большой степени характеризуется вязкостью масла, определенной при низких значениях скорости сдвига [13]. Такие измерения осуществляют на вискозиметре Брукфилда (метод ASTM D 2983-72) при выбираемой температуре масла от — 18 до —35°С [14 ]. [c.120]

    Определение вязкости при низких температура проводилось согласно методике, установленной Ю. Д. Пинкевичем [3]. Полученные значения вязкости были отложены на номограмме АЗТМ, представленной рис. 9. На эту же номограмму были нанесены и результаты прокачиваемости этих масел при низких температурах, причем за отправную точку было принято одно и то же количество прокачиваемого масла на оборот помпы при температуре, когда явления [c.153]

    Я хочу остановиться вкратце на вопросе о предельном давлении Р , о котором сегодня много говорили. П. А. Ребиндер, в частности, очень правильно отметил, что, не учитывая предельного давления, т. е. предельного напряжения сдвига, определять вязкость при низких температурах, конечно, не имеет смысла. К сожалению, в докладах, напечатанных в 1-м томе Трудов совещания, имеются определения вязкости масел при низких температурах без учета предельного напряжения. При этом, в зависимости от того, при какой скорости движения масла вязкость была определена, будет больше или меньше значение вязкости. В докладе А. Ф. Добрянского, например, имеется указание на это явление, но оно никак не учитывается. [c.239]

    МЕТОД ОПРЕДЕЛЕНИЯ ВЯЗКОСТИ МАСЛА ПРИ НИЗКИХ ТЕМПЕРАТУРАХ [c.114]

    При проведении определения вязкости масла при низкой температуре применяются следующие аппаратура и реактивы. [c.114]

    Как показано в главе III, индекс вязкости рассчитывается по значениям вязкости, найденным при температурах 37,8 и 98,9°. Кривые зависимости вязкости от температуры, отражающие вязкости масла при температурах от —18° и ниже и до +150° н выше, обычно получают экстраполяцией от вязкостей, фактически определенных при температурах 20, 37,8 54,4 и (или) 98,9° на графиках ASTM, путем проведения прямых через намеченные точки. Вязкости и индексы вязкости масел, содержащих полимеры, определяют на основе предположения, что они ведут себя так же, как обычные нефтяные масла, что позволяет располагать значения вязкостей на прямых линиях, нанесенных на графиках ASTM в тех же температурных пределах, как и при обычных маслах. Имеются основания считать, что эти предположения ошибочны, что и объясняет некоторые противоречия в истолковании значений испытаний масел, содержащих полимеры. На рис. 52 показаны значения вязкости, нанесенные на вязкостнотемпературном графике ASTM D-341 для основного масла с высоким индексом вязкости и температурой застывания —37° с добавкой полимеров или без них. Следует заметить, что прямая, экстраполированная от значений вязкости, измеренных при 20 37,8 и 98,9°, масла, содержащего полимеры, пересекает кривые вязкости дистиллятного масла без присадки при температуре около —16°. При более низких температурах экстраполированные вязкости, указанные для масла с добавками, располагаются [c.213]

    В области автомобилестроения имеется другое очень интересное применение полимеров в смазочных маслах для моторов. При повышении температуры смазочного масла вязкость его значительно снижается. При проектировании система смазки в моторе, размер масляного насоса, размер маслопроводов, зазор в подшипниках являются важными факторами для определения вязкости масла, которое должно применяться. Даже в Англии, где колебания температуры меньше, чем во многих других странах Европы, все же необходимо применять два различных смазочных масла—для зимы и для лета. Зимой при низких температурах высокая вязкость смазки затрудняет вращение вала двигателя  [c.168]

    Определение температуры застывания. Застывание масла или другого нефтепродукта происходит в результате возрастания вязкости при низких температурах, а также и потому, что в нефтепродукте находятся в том или ином количестве растворенные твердые углеводороды, которые в соответствии с их температурой плавления и растворимости при охлаждении переходят в твердое состояние, удерживая внутри кристаллической решетки загустевшие жидкие углеводороды масла. [c.334]

    Ответ докладчика. Первый вопрос относится к оптимальной скорости сдвига при низкой температуре порядка —18° и определению вязкости масла, обеспечивающей легкий низкотемпературный запуск двигателя. Я считаю, что для этого достаточны малые скорости сдвига порядка несколь-ки сотен сек . Возможно, что при провертывании холодного двигателя при помощи стартера скорости сдвига в масляных пленках в двигателе измеряются величиной этого порядка. Поэтому можно считать, что лабораторное определение вязкости при низких скоростях сдвига может дать вполне надежные показатели для оценки легкости запуска двигателя. [c.376]


    Основным фактором, характеризующим пусковые свойства масел, является величина вязкости при низких температурах, определяющая прокачиваемость на режимах пуска и прогрева. Однако при некоторых определенных условиях для оценки пусковых свойств масла приобретает значение его температура застывания. Потеря текучести масла при низких температурах связана с кристаллизацией парафина. [c.58]

    Предложенная обществом Автомобильных инженеров и промышленников система вязкостных номеров представляет собой классификацию моторных масел только по их вязкости без учета других свойств и характеристик. Классификация SAE основана на значениях вязкости, измеренных при 54,4 или 98,9°, т. е. при температурах, соответствующих тем, которые развиваются в картерах работающих двигателей. Классификация для зимних масел основана на определении вязкости при —18°. Соотношение между вязкостью моторного масла при низких температурах и легкостью запуска холодного двигателя освещается в главе III. [c.11]

    При низкой температуре и высоком давлении вязкость масла в зацеплении шестерен, может увеличиться настолько, что масло станет твердой пластичной массой. Это явление оказывает определенное положительное действие, так как масло в пластичном состоянии не вытекает из зазора сопряженных поверхностей и уменьшает влияние ударных нагрузок на детали. [c.46]

    Масло с более высоким индексом вязкости имеет лучшую текучесть при низкой температуре (запуск холодного двигателя) и более высокую вязкость при рабочей температуре двигателя. Высокий индекс вязкости необходим для всесезонных масел и некоторых гидравлических масел (жидкостей). Индекс вязкости определяется (по стандартам ASTM D 2270, DFN ISO 2909) при помощи двух эталонных масел. Вязкость одного из них сильно зависит от температуры (индекс вязкости принимается равным нулю, VI=0), а вязкость другого - мало зависит от температуры (индекс вязкости принимается равным 100 единиц, VI =100)., При температуре 100°С вязкость обоих эталонных масел и исследуемого масла должна быть одинаковой. Шкала индекса вязкости получается делением разницы вязкостей эталонных масел при температуре 40°С на 100 равных частей. Индекс вязкости исследуемого масла находят по шкале после определения его вязкости при температуре 40°С, а если индекс вязкости превышает 100, его находят расчетным путем (рис. 2.8). [c.49]

    Для определения постоянной вискозиметров применяют эталонные калибровочные масла с вязкостями от 10 до 1000 сст. Вязкость их определяют каждые три месяца. Жидкости должны храниться в темноте (в шкафу или темной бутыли) при комнатной температуре и не должны даже кратковременно подвергаться действию низких температур. [c.288]

    Для определения вязкости при 0° С и при отрицательных температурах применяется прозрачный цилиндрический термос. Допускается также при отсутствии термостатирующих устройств применять высокие химические стаканы. Для использования при низких температурах стакан изолируется асбестом, в котором делаются прорези для наблюдения. В зависимости от температуры определения для термостатирования применяются различные жидкости. При температуре определения от 50 до 100° С — прозрачное нефтяное масло, или глицерин, или 25%-ный водный раствор азотнокислого аммония, на поверхность которого налито нефтяное прозрачное масло от 20 до 50° С — вода от О до 20° С — вода со льдом или этиловый спирт с твердой двуокисью углерода (сухим льдом) от—50 до 0° С — смесь этилового спирта с сухим льдом. [c.185]

    Типичная кривая аномальной вязкости приведена на рис. 24. При возрастании давления, сопровождающемся ростом градиента скорости, кажущаяся вязкость понижается до некоторого достаточно большого градиента скорости, когда аномальная вязкость исчезает и сопротивление течению масла зависит только от остаточной вязкости. Таким образом, как указывает Г. И. Фукс [46], подвижность масел при низких температурах определяется по крайней мере двумя вязкостями кажущейся в области аномалии вязкости и остаточной. Эти вязкости различаются между собой не только но величине, но, очевидно, и но физической природе. Кажущаяся вязкость непостоянна и зависит от свойства масел, прибора и условий определения, что очень ограничивает ее практическое значение. [c.128]

    Хорошо очищенные минеральные масла как дестиллатные, так и остаточные не показывают каких-либо аномалий, присущих коллоидной структуре. Наоборот, неочищенны дестиллатные масла, а в особенности вязкие остаточные, обнаруживают явные признаки коллоидной структуры, выражающиеся в появлении при низких температурах аномалий при определении вязкости, т. е. одного из явлений, присущих коллоидным растворам. [c.54]

    От всех масел резко отличаются две группы синтетических масел полиорганосилоксановые и фторуглеродные. Полиорганосилоксановые масла по вязкостно-темп( ратурным свойствам превосходят все известные масла и значительно лучше нефтяных масел. Их вязкость с изменением температуры от 100 °С до —34°С увеличивается лишь в 14 раз, в то время как вязкость нефтяного масла возрастает в тысячи раз. Низкий температурный коэффициент изменения вязкости полиорганосилоксанов связан с особенностью их строения. При низких температурах макромолекулы органосилоксанового масла имеют преимущественно спиралеобразную конформацию, что приводит к небольшому числу межмолекулярных взаимодействий между макромолекулами. При повышении температуры спирали разворачиваются, число межмолекулярных связей увеличивается, что приводит к определенной компенсации уменьшения вязкости, вызванного усилением теплового движения макромолекул и их сегментов. Фторуглеродные масла, наоборот, отличаются очень резким повышением вязкости с понижением температуры. Они имеют относительно высокие температуры застывания (не ниже -30°С). [c.662]

    В области низких температур, как показали многочисленные исследования смазочные масла обладают рядом особенностей, в частности пределом текучести, или пластичностью, тиксотроп-ностью , или аномалией вязкости, свойственным дисперсным системам. Вязкость таких систем (фиг. 28) изменяется при различных скоростях протекания дисперсных тел через капиллярные трубки. При увеличении скорости течения, точнее градиента скорости (участок 2), структура дисперсной системы разрушается, в связи с чем вязкость вещества снижается и доходит до определенного [c.77]

    К сожалению, методы определения вязкости при низких температурах еще не вошли в лабораторную практику. Некоторым распространением пользуется, предложенный нами [2] вискозиметр для работы при низких температурах, но следует отметить, что, несмотря на простоту, точность и компактность прибора, этот вискозиметр позволяет определять вязкость только до —35° С. Поскольку в настоящее время стоит в порядке дня вопрос о маслах, застывающих ниже, нами разработан новый метод определения вязкости при низких температурах, не ограниченный практически каким-либо температурным пределом и кроме того не требующий обращения с ртутью, обладающей токсическ1ши свойствами. При разработке этого метода мы в основном исходили из метода Уббелоде-Гольде [3], стандартизованного в СССР в качестве метода определения динамической вязкости [4]. [c.141]

    Определение вязкости при низких температурах производилось на видоизмененном виско метре Уббелоде-Гольде. В отличие от модели вискозиметра Уббелоде-Голь- е, где вверху капилляра имеется расширение трубки в вгде шарика, в нашем вискозиметре капилляр, расширяясь, переходил в цилиндрическую трубку. Такое изменение было вызвано тем обстоятельством, что при температурах ниже —5,—10° С масла становятся очень вязкими и при истечении из вискозиметра Уббелоде-Гольде объем мас.ла оказывается недостаточным для заполнения шарика вследствие налипания масла на стенки. На видоизмененном вискозиметре этот недостаток был устранен, и имелась возможность производить определение вязкости смазок до —50, —60°С. [c.167]

    Химическая природа полимерной присадки, ее молекулярный вес и физико-химические свойства масляной основы определяют вязкостные свойства загущенных масел. Для оценки этой характеристики масла пользуются, помимо непосредственного определения вязкости при низких температурах, показателем V5o/vloo или [c.132]

    Многие исследователи для решения этой задачи пошли по пути создания специальных капиллярных вискозиметров [3], торсионных вискозиметров [4] и других приборов, задавшись целью путем определения вязкости масла при низких температурах оценить его эксплоатационные качества. Хотя эти методы и дали возможность более подробно изучить свойства масел при низких температурах, но и они не смогли воспроизвести истинных явлений поведения масла в двигателе и создать закон протекания масла по трубопроводу при низких температурах [53. Это объясняется тем, что смазочные масла при низких температурах представляют собой пластичные тела и отступают от закона Ньютона. Больше того, исследованиями заграничных и наших ученых [6, 7] доказано, что смазочные масла при низких температурах скЛонны к проявлению аномалии вязкости, в силу чего результаты, полученные в вискозиметрах, являются в достатотаой мере случайными. [c.145]

    Было бы правильным определять нижний температурный предел возможного использования масла по его вязкости. Но определение вязкости масла при низких температурах связано с больпшми трудностями. В практике эксплуатации о низкотемпературных свойствах масла принято судить по температуре его застывания, определить которую значительно проще. [c.228]

    Масло с определенным уровнем вязкости, обеспечивающее нормальную работу узла трения при максимальном температурном режиме, иеработоспособно при низких температурах из-за резкого увеличения вязкости (рис. 4). В этом случае подбирают маловязкое базовое масло (3—4 мм /с при 100 °С, см. риВ ая 3) с хорошими низкотемпературными свойствами и повышают его вяЗ КОсть до. необходимого уровня, при высоких температурах (точка А) введением полимерных присадок. Вязкость загущенного масла при низких температурах изменяется примерно так же, как и маловязкой основы (ом. рис. 4, кривая 2). Недостатком загущенных масел является низкая стабильность к механическим и термическим воздействиям. В узлах трения происходит постепенная деструкция полимера, и вязкостно-температурные свойства загущенных масел ухудшаются. Окорость и глубина деструкции определяются химической природой и молекулярной массой присадки, а также температурой, нагрузками и другими факторами. [c.29]

    Вязкость прокачиваемости определяется по стандарту ASTM D 4684 и характеризует возможность притока масла в масляный насос и создания нужного давления в системе смазки при запуске двигателя. Определение вязкости прокачиваемости было введено после того, как было замечено, что некоторые масла (SAE 10W-30 и SAE 10W-40) после пребывания определенного времени (более 24 часов) при низкой температуре, теряют текучесть и становятся желеобразными. [c.71]

    Если определение вязкости ведется лри 20°, температура водяной бапи должна быть несколько выше 20° для того, чтобы компенсировать охлаждение масла во время опыта. Поэтому при низких вязкостях, когда весь опыт Дотится всего несколько минут, разница между температурой масла и воды может быть мала, но она увеличивается с вязкостью с одной стороны и температурой определения— с другой. Так напр., по итальянским условиям (26/1—16/11 1925 г.) в Милане, предложено при определении вязкости при 20° [c.254]

    Согласно наиболее распространенной гипотезе, кристаллизация твердых углеводородов из масла, приводящая к его застуднева-Пию, рассматривается как образование в системе парафин — масло пространственной сетки (или каркаса), которая, иммобилизуя жидкую фазу, препятствует ее движению. Сцепление частиц дисперсной фазы происходит по ребрам монокристаллов, где наблюдается разрыв пленок дисперсионной среды образовавшийся гель обладает определенной механической прочностью. Другая гипотеза связывает застудневание с возникновением сольватных оболочек жидкой фазы вокруг кристаллов парафина. Дисперсионная среда, иммобилизированная вокруг дисперсных частиц, значительно увеличивает их объем, что повышает внутреннее трение всей системы и понижает ее текучесть. Предполагают, что при сдвиге, обусловленном механическим воздействием, толщина сольватных оболочек уменьшается и гель может превращаться в золь. При понижении температуры масел развитие процесса ассоциации приводит к образованию мицелл, вызывающих застудневание системы независимо от того, выделяется твердая фаза или нет. Добавление депрессоров значительно снижает как статическое, так и динамическое предельное напряжение сдвига депрессоры задерживают появление аномальной вязкости, сдвигая начало образования структуры в область более низких температур. [c.151]

    Поэтому для обеспечения снижения расхода топлива понятно стремление разработчиков к созданию масла минимальной вязкости. Однако с уменьшением вязкости масла существует опасность увеличения задира, истирания и питтинга. Кроме этого, уменьшение вязкости масла ниже определенного уровня может привести к повышению его расхода из-за несовершенства уплотнений или недостаточной герметичности трансмиссии. В связи с этим к маслу при его разработке предъявляют противоречивые требования. Для обеспечения холодного пуска трансмиссии при возможно низких температурах и минимуме потерь на преодоление трения в передачах вязкость масла должна быть минимальной, а д ля обеспечения высокой несущей способности масляной пленки и для снижения утечек через уплотнения — максимальной. Однако по мере совершенстювания конструкций агрегатов трансмиссий, повьшГения интенсивности их работы доминирующими режимами работы узлов становятся граничное и смешанное трение, при которых вязкость масла теряет сюе прежнее значение, а первостепенное значение приобретает введение в масло эффективных функциональньк присадок. [c.188]

    Для определения вязкости масел при низких температурах пользуются прибором Ю. А. Пинкевича (фиг. 36). Этот виско-.зиметр представляет собой О-образную трубку со впаянным рабочим капилляром 3, расширениями 1 и. 2 и двумя эллипсоидами 4 и 5. Перед опытом вискозиметр загружают маслом через колено Б до меток, нанесенных на расширениях 1 к 2. После этого через колено А в вискозиметр поверх слоя масла вводят 5 мл подкра- [c.84]

    Н. Н. Серб-Сербина исследовала влияние электролитов на структурно-реологические свойства глинистых суспензий. Были опубликованы работы В. В. Гончарова, М. П. Воларовича и С. М. Юсуповой по механическим свойствам глинистого теста. Классификацию приборов для определения физико-механических свойств пластичных тел дал С. М. Леви. П. А. Ребиндер рассмотрел аномалию вязкости смазок при низких температурах, Д. С. Великовский изложил вопросы вязкости смазочных эмульсий и растворов мыл в минеральных маслах, М. П. Воларович описал новые вискозиметры капиллярного типа и новую модель ротационного вискозиметра, А. А. Трапезников опубликовал работу о свойствах металлических мыл и давлениях их двухмерных слоев. Представляет ценность монография П. А. Ребиндера, Л. А. Шрейнера и К. Ф. Жигача Понизители твердости в бурении (М., Изд-во АН СССР, 1944), в которой излагаются результаты исследований влияния поверхностно-активных веществ на поверхность твердого тела. [c.8]


Смотреть страницы где упоминается термин Определение вязкости масел при низкой температуре: [c.46]    [c.137]    [c.120]    [c.868]    [c.892]    [c.915]    [c.966]    [c.246]    [c.348]    [c.109]    [c.45]    [c.254]   
Смотреть главы в:

Контроль производства масел и парафинов -> Определение вязкости масел при низкой температуре




ПОИСК





Смотрите так же термины и статьи:

Вязкость масла при низких температурах

Вязкость определение

Масла смазочные. Методы определения вязкости при низкой температуре

Определение динамической вязкости маловязких специальных масел при низких температурах

Температура определение



© 2025 chem21.info Реклама на сайте