Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Химическая коррозия металлов и сплавов

    Химический состав металлов (сплавов), испытанных на коррозию и указанных в таблицах химической стойкости (табл. Э—18), приведен в табл. 2. [c.367]

    Борьба с коррозией (электрохимическим и химическим разрушением металлов и сплавов) — проблема особой важности. Важнейшими методами защиты от электрохимической и химической коррозии являются использование вместо корродирующих металлов нержавеющей стали, химически стойких (кислотоупорных) и жаропрочных сплавов, защита поверхности металла специальными покрытиями, а также электрохимические и другие методы. К электрохимическим методам защиты в средах, проводящих электрический ток, можно отнести катодную защиту и способ протекторов. При катодной защите предохраняемый от разрушения металл (конструкцию) присоединяют к отрицательному полюсу источника электрической энергии. При протекторном способе к защищаемому металлу (например, подводной металлической части морских судов) присоединяют в виде листа другой, более активный металл — протектор (цинк и некоторые сплавы), который и будет разрушаться. [c.161]


    Под коррозией металлов (сплавов) понимается самопроизвольное их разрушение вследствие химического или электрохимического взаимодействия с окружающей средой. [c.279]

    В данной главе рассматриваются вопросы химической коррозии металлов. Процесс разрушения металлов и сплавов вследствие взаимодействия их с внешней средой, не сопровождающийся возникновением электрических токов, называют химической коррозией. Характерной особенностью процесса химической коррозии является, в отличие от электрохимической коррозии, образование продуктов коррозии непосредственно в месте взаимодействия металла с агрессивной средой. Химическая коррозия подчиняется основным законам химической кинетики гетерогенных реакций и наблюдается при действии на металл сухих газов или жидких неэлектролитов. [c.131]

    Большое значение для коррозионных процессов имеет способность металла образовывать на поверхности прочные оксидные пленки. Так, алюминий окисляется легче железа, но он более стоек к коррозии, так как окисляясь кислородом воздуха, покрывается плотной пленкой оксида. На этом явлении основана пассивация металлов, заключающаяся в обработке их поверхности окислителями, в результате чего на поверхности металла образуется чрезвычайно тонкая и плотная пленка, препятствующая оррозии. Примером может служить пассивация железа концентрированной азотной кислотой, открытая еще М. В. Ломоносовым, или. воронение стали в щелочном растворе нитрата и нитрита натрия. Пассивированием объясняется также химическая стойкость нержавеющих сплавов и металлов, на поверхности которых под действием кислорода воздуха образуется защитный слой оксидов, [c.148]

    Применительно к наиболее важному и распространенному металлическому конструкционному материалу — сплавам на железной основе и наиболее распространенному процессу химической коррозии металлов — газовой коррозии — можно отметить следующее. [c.137]

    Первопричиной химической коррозии металлов и сплавов является их термодинамическая неустойчивость в различных средах при данных внешних условиях, т. е. самопроизвольный переход металла в более устойчивое — окисленное — состояние, которое достигается в результате реакции [c.50]

    Некоторые компоненты ПИНС способны усиливать химическую коррозию металла. Это — жирные кислоты, неполные эфиры, серосодержащие ПАВ, окисленный петролатум, амины, амиды и имиды (по отношению к цветным металлам) и др. Поэтому в состав ПИНС-РК вводят противокоррозионные присадки, обеспечивающие им высокие противокоррозионные свойства по отношению как к черным, так и цветным металлам и сплавам в статических и динамических условиях. [c.225]


    ХИМИЧЕСКАЯ КОРРОЗИЯ МЕТАЛЛОВ И СПЛАВОВ [c.26]

    Лаборатория коррозии НИУИФ занимается подбором и исследованием химической стойкости металлов, сплавов и неметаллических материалов для процессов производств основной химической промышленности, а также принимает участие в разработке новых материалов. [c.183]

    Глава III. Химическая коррозия металлов и сплавов [c.3]

    В книге содержатся необходимые сведения по теории коррозионных процессов, освещены причины коррозии металлов, сплавов и неметаллических материалов, описаны важнейшие методы защиты материалов от коррозии, даны указания по монтажу наиболее типовых аппаратов. Приведенные в книге данные о свойствах важнейших коррозионностойких сплавов и химически стойких неметаллических материалов помогут будущему [c.7]

    Борьбу с химической коррозией металлов в жидких неэлектролитах ведут путем подбора устойчивых в данной среде металлов и сплавов (например, алюминий и его сплавы, нержавеющие стали в крекинг-бензинах) или нанесением защитных покрытий (например, покрытие стали алюминием для атмосферы сероводорода). [c.46]

    Бензины при транспортировании, хранении и применении вызывают коррозию стали трубопроводов и резервуаров, меди, латуни и других сплавов топливных систем, деталей арматуры и т. д. Коррозия металлов, соприкасающихся с бензинами, может носить чисто химический или электрохимический характер. Углеводороды, входящие в состав бензинов, не оказывают коррозионного воздействия [c.30]

    Одним из методов получения химически стойких сплавов, как известно, является легирование неустойчивого или малоустойчивого металла атомами более устойчивого металла, например легирование меди золотом или железа никелем и т. п. Рассмотрим процесс коррозии двойного сплава, являющегося гомогенным твердым раствором, в котором один из компонентов вполне стоек в данной агрессивной среде, а другой, наоборот, растворяется в ней. [c.125]

    Савицкая О. С. Карбонильная коррозия металлов и сплавов при высо-ки. температурах и давлениях. .Химическое и нефтяное машиностроение , 1965, № а. [c.158]

    Имеющиеся в технической литературе и в нормативной документации рекомендации, позволяющие оценить величины термических сопротивлений некоторых видов загрязнений, во многих, случаях противоречивы, недостаточно обоснованы и неконкретны. Связано это прежде всего с весьма большим разнообразием сопутствующих химической технологии процессов, в которых теплоносители загрязняют теплопередающие поверхности аппаратов. К таким процессам относятся коррозия металлов и сплавов, отложение солей, взвешенных твердых примесей, образование в потоке теплоносителя полимеров, их отложение и налипание на поверхности и т. п. Такое разнообразие процессов существенно затрудняет разработку обобщенных методов оценки величины термических сопротивлений загрязнений, и поэтому рекомендации по их выбору обычно имеют ограниченные области применения и являются ориентировочными. [c.346]

    Равномерная коррозия — наиболее часто встречающийся на практике вид коррозии металлов и сплавов. Она обусловлена химическими и электрохимическими реакциями, протекающими более или менее равномерно на всей поверхности металла, помещенного в коррозионную среду (водную, атмосферную и т. д.). [c.442]

    Изложены закономерности учения о коррозии металлов и основы технологии противокоррозионной защиты. Рассмотрены биогенная и почвенная коррозия, высокотемпературное окисление металлов, питтинговая и межкристаллитная коррозия, коррозионное растрескивание, влияние радиации и блуждающих токов. Охарактеризована стойкость основных групп металлических конструкционных материалов, в том числе новых сплавов, используемых в химической, атомной, энергетической и других отраслях промышленности. [c.4]

    Газовая коррозия — наиболее распространенный вид химической коррозии. Она происходит в результате взаимодействия сплава металла с газами при высоких температурах. [c.25]

    В основе протекторной защиты (рис. У.8) лежит специально созданная гальваническая пара с катодом из какого-либо металла. Электродный потенциал последнего отрицательнее электродного потенциала самого химически активного компонента сплава, из которого изготовлено защищаемое от коррозии изделие. Анодом в такой гальванической паре выступает защищаемое изделие, точнее — самый пассивный компонент сплава, из которого изготовлено это изделие. При соприкосновении такой гальванической пары с растворителем (или раствором электролита) корродировать будет лишь материал протектора, обеспечивая тем самым сохранность защищаемого изделия. [c.259]

    МОНЕЛЬ-МЕТАЛЛ — сплав на основе никеля, содержит до 30% меди, 2—3% железа, марганец, иногда алюминий. Очень устойчив против коррозии в морской и пресной водах, в щелочах, органических кислотах и красителях. Обладает хорошими механическими и термическими свойствами. М.-м. широко применяется в электротехнике, судостроительной, электровакуумной, текстильной, химической и других промышленностях, в медицине, а также в аппаратостроении. [c.164]


    Многие химические процессы, имеющие большое значение в технике, относятся к числу гетерогенных реакций горение твердого и жидкого топлива (например, С + Ог = СОг), химическая и электрохимическая коррозия металлов и сплавов (например, Zn + + Va Ог-> ZnO) и т. п. Реакция в гетерогенной системе осуществляется на поверхности раздела между фазами. Чем больше эта поверхность, тем больше вероятность столкновения молекул реагирующих веществ, находящихся в разных фазах. Поэтому скорость гетерогенного химического взаимодействия при постоянной температуре зависит не только от концентрации газообразных (или жидких) реагентов, но и от площади поверхности раздела между фазами 5. [c.118]

    Многие химические процессы, имеющие большое значение в технике, относятся к числу гетерогенных реакций горение твердого и жидкого топлива (например, С + О2 = СО2), химическая и электрохимическая коррозия металлов и сплавов (например, sZn+ /2 02 — Zn0) и т.п. Реакция в гетерогенной системе осу-ществляется на поверхности раздела фаз. [c.113]

    Современная техника использует огромные количества металлов и сплавов. Поэтому разработка способов защиты металлов от коррозии является важной народнохозяйственной проблемой. Особое значение имеет борьба с коррозией металлов в химическом аппаратостроении, судостроении, в нефтяной промышленности, в металлургии, в ракетной технике. [c.325]

    Из приведенных выше уравнений видно, что повышение концентрации ионов Н+ или молекул кислорода приводит к усилению процесса коррозии, так как катодные процессы при этом ускоряются. При соприкосновении двух различных металлов процесс коррозии протекает в направлении растворения того из металлов, который обладает более высоким электроотрицательным электродным потенциалом (см. гл. VI, 76). Коррозия сплавов, содержащих более двух металлов и различные химические соединения металлов друг с другом, протекает сложнее. В данном случае на поверхности металла возникают гальванические пары различных видов. Изучением таких многоэлектродных систем занимались Г. В. Акимов, Н. Д. Томашов, А. Эванс. [c.326]

    Известно, что от К. м. безвозвратно теряется около 10% ежегодной доСычи металла, кроме дополнительных потерь, связанных с антикоррозионными мероприятиями и ликвидацией последствий от коррозии. По механизму коррозионного процесса различают К- м. химическую и электрохимическую. Под химической коррозией подразумевают взаимодействие металлов с жидкими или газообразными веществами на поверхности металла, не сопровождающееся возникновением электродных процессов на границе раздела фаз. Напрнмер, реакции нри высоких темперагурах с кислородом, галогенами, сероводородом, сернистым газом, диоксидом углерода или водяным паром. Под электрохимической коррозией подразумевают процессы взаимодействия металлов с электролитами в водных растворах или в расплавах. Для защиты от коррозии поверхность металла покрывают тонким слоем масляной краски, лаков, эмали, другого металла, используют ингибиторы коррозии, электрохимическую защиту металлов, вводят в сплавы новые элементы, сильно повышающие коррозионную устойчивость, такие как хром, марганец, кремний и др. [c.136]

    Но пассивация металла может возникать за счет самого процесса коррозии в результате поляризации электрода. Этот процесс, зависящий от многих факторов, изучен в трудах Г. В. Акимова, Н. Д. Томашова и других ученых. Создавая условия поляризации в зависимости от состава сплава и состава коррозионной среды, можно защитить металл от разрушения, изменяя потенциал растворения. Сочетание анодной и катодной поляризации может значительно снизить скорость коррозионных процессов, увеличивая химическую стойкость металла. [c.548]

    В настоящем разделе дается характеристика химической стойкости наиболее распространенных видов конструкционных материалов для ориентировочной оценки возможности использования в различных отраслях техники в приложении 1 приведены справочные данные, содержащие значения скоростей коррозии металлов и сплавов и показатели стойкости неметаллических материалов в некоторых жидких и газообразных средах. [c.6]

    В связи с тем, что суммарный коррозионно-механический износ является (результатом многих процессов, а также с тем, что внимание специалистов было сосредоточено главным образом на химической коррозии наименее стойких деталей из цветных металлов или сплавов (например, вкладышей подшипников коленчатого вала), опасность и значение электрохимической коррозии долгое время недооценивались. Это помимо всего прочего привело к путанице в терминах и определениях, принятых в научно-тех1нической литературе по коррозии и защите металлов и по нефтепродуктам. В табл. 4 приведены основные понятия и термины применительно к проблеме нефтепродукты и коррозия по их состоянию на се-Г0ДНЯШ1НИЙ день. Как видно, несмотря на сопутствующие процессы необходимо четко различать коррозионные свойства нефтепродуктов (их коррозионную агрессивность или, наоборот, противокоррозионные свойства), связанные в основ1ном с химическими процессами и зависящие от способности самих нефтепродуктов вызывать или предотвращать химическую коррозию металла, и их защитные свойства, т. е. способность защищать металл от электрохимической коррозии в присутствии электролита. В соответствии с этим необходимо, в частности, различать противокоррозионные присадки к нефтепродуктам, добавляемые для улучшения их коррозионных свойств, и маслорастворимые ингибиторы коррозии, улучшающие защитные свойства нефтепродуктов. Как показано [c.15]

    Бензины при транспортировании, хранении и применении вызывают коррозию стали трубопроводов и резервуаров, меди, латуни и других сплавов топливных систем, детагкй арматуры и т.д. Коррозия металлов, соприкасающихся с бензиналш, может носить чисто химически шш электрохимический характер. [c.69]

    К орроэией металлов называют самопроизвольное разрушение металлических материалов вследствие химического или электрохимического взаимодействия их с окружающей средой. Под металлами здесь и в дальнейшем подразумеваются простые металлы и их сплавы, а также металлические изделия и конструкции. Средой, в которой происходит коррозия металлов, обычно бывают различные жидкости и газы. [c.8]

    Биологическое поражение нефтяных масел существенно повышает их коррозионную активность по отношению к металлам, в том числе к алюминию и его сплавам, не корродирующим при контакте с маслами в обычных условиях эксплуатации. Это связано с усилением химической коррозии из-за образования в масле при жизнедеятельности микроорганизмов таких агрессивных веществ, как органические и минеральные кислоты, аммиак, свободная сера, двуокись углерода, сероводород. Может наблюдаться Также электрохимическая коррозия— на отдельных участках поверхности металла образуются колонии микроорганизмов (в виде наростов), что усиливает аэрацию, увеличивает концентрацию кислорода на этих участках и создает там-разность потенциалов. Другой вид электрохимической коррозии возникает в результате жизнедеятельности сульфатвосстанав-ливающих бактерий, под действием которых из сульфатов образуются ионы серы, реагирующие затем с металлом, образуя сульфиды. Этот процесс получил название катодной деполяризации. Коррозии способствует склонность многих микроорганизмов к разрушению [c.71]

    Скорость газовой коррозии металлов обычно возрастает прн температурах выше 200—300°С. При температурах от 100—200 до 200—300°С газы, даже содержащие пары воды, не опасны, если при этом не происходит конденсация жидкости и, следовательно, не могут протекать электрохимические процессы. Даже такие агрессивные газы, как хлор и хлорид водорода, при указанных температурах вызывают лишь слабую коррозию углеродистой стали. Выше 200—300°С химическая активность газов сильно возрастает хлор начинает действовать на сплавы железа при температуре выше 200°С, хлорид водорода—выше 300°С, диоксид серы, диоксид азота, пары серы — около 500Х, сероводород — при еще более высоких температурах. [c.459]

    Ингибиторы атмосферной коррозии представляю собой химические соединения, способные предотвра щать или тормозить коррозию металлов и их сплавов при непосредственном контакте с металлами (контактные ингибиторы) или в парофазном состоянии (летучие ингибиторы). В настоящее время насчитывается свыше сотни летучих ингибиторов, относящихся к различным классам органических соединений, но промыш ленное применение находят лишь немногие ннгибито ры, обладающие комплексом необходимых эксилуата ционных свойств, к летучим ингибиторам относятся следующие. [c.191]

    Ддя аацшты металлов от распространенного и вредного вида химической коррозии —тазовой — используют жаро тойкое легирование, т. е. введение в состав сплава компонентов, повышающих жаростойкость. [c.364]


Смотреть страницы где упоминается термин Химическая коррозия металлов и сплавов: [c.11]    [c.11]    [c.7]    [c.71]    [c.554]    [c.806]    [c.28]   
Смотреть главы в:

Коррозия и основы гальваностегии Издание 2 -> Химическая коррозия металлов и сплавов




ПОИСК





Смотрите так же термины и статьи:

Влияние химического состава и структуры металлов и сплавов на коррозию

Коррозия металлов

Коррозия металлов коррозии

Коррозия металлов химическая

Коррозия химическая

Металлы сплавы

Металлы химические

Сплавы и металлы металлов



© 2024 chem21.info Реклама на сайте