Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Фермент-субстратные промежуточные комплексы

Рис. 13. Промежуточные формы пиридоксальфосфата в фермент-субстратном комплексе в ходе реакции переаминирования Рис. 13. <a href="/info/100165">Промежуточные формы</a> пиридоксальфосфата в <a href="/info/187584">фермент-субстратном комплексе</a> в <a href="/info/592095">ходе реакции</a> переаминирования

    Фермент-субстратные промежуточные комплексы 59 [c.59]

    ФЕРМЕНТ-СУБСТРАТНЫЕ ПРОМЕЖУТОЧНЫЕ КОМПЛЕКСЫ [c.55]

    Фермент-субстратные промежуточные комплексы 57 [c.57]

    Много обсуждались разнообразные механизмы действия ферментов, принципиально отличные от описанных выше, в том числе механизм типа цепной реакции и механизм действия на расстоянии но в настоящее время полагают, что они не применимы к ферментативному катализу. В основе современных идей в этой области лежат три главных факта 1) прямое доказательство существования фермент-субстратных промежуточных комплексов, 2) плодотворность представления о фермент- [c.51]

    Обратим внимание, что образование промежуточного фермент-субстратного комплекса (комплекса Михаэлиса) само по себе вовсе не оказывает влияния на ускорение ферментативной реакции (в кинетическом режиме второго порядка, т. е. при [НУ] С Кз)- Дело в том, что концентрация стабилизированного пере- [c.40]

    Фермент-субстратные промежуточные комплексы 61 [c.61]

    Фермент-субстратные промежуточные комплексы 63 [c.63]

    Фермент-субстратные промежуточные комплексы 65 [c.65]

    Л. Михаэлис не только постулировал образование промежуточного фермент-субстратного Е8-комплекса, но и рассчитал влияние концентрации субстрата на скорость реакции. В процессе реакции различают несколько стадий присоединение молекулы субстрата к ферменту, преобразование первичного промежуточного соединения в один или несколько последовательных (переходных) комплексов и протекающее в одну или несколько стадий отделение конечных продуктов реакции от фермента. Это можно схематически проиллюстрировать следующими примерами  [c.130]

    Приведем еще один пример. Один из кристаллических промежуточных продуктов пурпурного цвета, выделенный Яги и др. [2—5] в анаэробных условиях из реакционной смеси оксидазы О-аминокислот, представляет собой, по-видимому, истинный фермент-субстратный аддитивный комплекс. Все данные убедительно свидетельствуют о том, что это так. Воздействие на него бензоатом в анаэробных условиях приводит к диссоциации комплекса с выделением субстрата и образованием комп- [c.62]

    С субстратами, наблюдаются непосредственно — с помощью спектральных методов [43], метода электронного парамагнитного резонанса и других методов, позволяющих регистрировать конформационные изменения в белке. При изучении этой литературы, однако, очень важно помнить о принципиальном различии между фермент-субстратным аддитивным комплексом и промежуточным соединением, содержащим замещенную форму фермента. Установить такое различие удается обычно на основании кинетических данных (гл. VHI), но, если такие данные в работе не приводятся, говорить о том, что в ней показано образование комплекса Михаэлиса , как его иногда называют, можно лишь предположительно, пока не будет установлена истинная природа механизма. [c.64]


    Из величины Штах при известной концентрации фермента по (6.46) можно рассчитать — константу скорости распада промежуточного соединения Е5, называемого фермент-субстратным комплексом. [c.253]

    При изучении механизма химической реакции, катализируемой ферментами, исследователя всегда интересует не только определение промежуточных и конечных продуктов и выяснение отдельных стадий реакции, но и природа тех функциональных групп в молекуле фермента, которые обеспечивают специфичность действия фермента на данный субстрат (субстраты) и высокую каталитическую активность. Речь идет, следовательно, о точном знании геометрии и третичной структуры фермента, а также химической природы того участка (участков) молекулы фермента, который обеспечивает высокую скорость каталитической реакции. Участвующие в ферментативных реакциях молекулы субстратов часто имеют небольшие размеры по сравнению с молекулами ферментов, поэтому было высказано предположение, что при образовании фермент-субстратных комплексов в непосредственный контакт с молекулой субстрата, очевидно, вступает ограниченная часть аминокислот пептидной цепи. Отсюда возникло представление об активном центре фермента. Под активным центром подразумевают уникальную комбинацию аминокислотных остатков в молекуле фермента, обеспечивающую непосредственное связывание ее с молекулой субстрата и прямое участие в акте катализа (рис. 4.2). Установлено, что у сложных ферментов в состав активного центра входят также простетические группы. [c.122]

    Таким образом, в механизме ферментативного катализа ведущую роль играют промежуточные фермент-субстратные комплексы, образование которых определяется как тонкой трехмерной структурой активного центра, так и уникальной структурной организацией всей молекулы фермента, обеспечивающими высокую каталитическую активность и специфичность действия биокатализатора. [c.134]

    Существуют ингибиторы и смещанного действия, что зависит от структурных особенностей ингибитора и фермента. Смещай ный тип ингибирования может возникать и в случае, когда ингибитор соединяется не с исходным фермент-субстратным комплексом, а с какими-нибудь промежуточными продуктами, образующимися в процессе реакции. Известны виды торможения, когда ингибитор блокирует не фермент, а субстрат или кофермент. Это наблюдается ири концентрации ингибитора, близкой к концентрации субстрата или кофактора. [c.205]

    Ферменты помогают субстратам принять переходное состояние за счет энергии связывания при образовании фермент-субстратного комплекса. Снижение энергии активации при ферментативном катализе обусловлено увеличением числа стадий химического процесса. Индуцирование ряда промежуточных реакций приводит к тому, что исходный активационный барьер дробится на несколько более низких барьеров, преодолеть которые реагирующие молекулы могут гораздо быстрее, чем основной. [c.68]

    Наряду с катализом за счет свободной энергии сорбции (см. 1—4 этой главы) ферментативные реакции находят источник ускорения в том, что молекула субстрата подвергается химической атаке не одной каталитической группой (как это происходит в гомогенно-каталитических реакциях второго порядка), а сразу несколькими. Это связано с тем, что третичная структура белка позволяет сосредоточить в активном центре фермента значительное число электрофильных и нуклеофильных групп, таких как имидазольная, карбоксильная, сульфгид-рильная, аммонийная, фенольная и др. (см. гл. I), которые, как известно из гомогенного катализа, представляют собой общекислотные и общеосновные катализаторы. Именно поэтому в промежуточных фермент-субстратных комплексах в принципе возможна атака сорбированной субстратной молекулы по механизмам общего кислотноосновного катализа. [c.61]

    В литературе иногда фермент-субстратным комплексом называют не только первичный продукт реакции фермента с субстратом, но также и все промежуточные соединения, образующиеся на последующих стадиях, вплоть до выделения последнего продукта реакции и регенерации свободного фермента. Нам представляется, что [c.49]

    Чисто ковалентного связывания неизмененного субстрата при образовании фермент-субстратного комплекса, по-видимому, не происходит. Однако известны случаи, когда фермент все же образует ковалентно связанные промежуточные соединения с переносимыми в ходе реакции группировками, принадлежащими субстрату. В некоторых случаях переносимой группировкой является один атом, в других —вся молекула субстрата, за исключением одного атома. Важно, что этот ковалентный тип промежуточного соединения, образующегося путем разрыва связи в молекуле субстрата и образования новой связи между ферментом и фрагментом субстрата, качественно отличен от простого фермент-субстратного аддитивного комплекса. Важные кинетические следствия этого различия мы рассмотрим в гл. VIII.  [c.60]


    Преобразование Е8-комплекса в один или несколько активированных фермент-субстратных переходных комплексов. Эта стадия самая медленная и обычно лимитирует скорость всего ферментативного катализа она связана с ослаблением химических связей в субстрате, их разрывом и образованием новых связей в результате взаимодействия с каталитическими группами фермента. Именно благодаря образованию активированных переходных комплев -сов снижается энергия активации процесса. Если для ферментов характерен ковалентный тип катализа, который протекает за счет образования ковалентных связей между каталитическими группами активного центра и группами субстрата, то соответствующие промежуточные ковалентные фермент-субстратные комплексы очень неустойчивы и легко распадаются с выделением продуктов реакции. [c.103]

    Из уравнения (2.21) видно, что термодинамически эффективность ферментативного катализа определяется разницей свободных энергий межмолекулярного (при образовании комплекса Михаэлиса) и внутримолекулярного (в переходном состоянии реакции) образования связи Е-Я. Следовательно, в количественном отношении кинетическая роль комплексообразования Е Н в ускорении ферментативной реакции представляется несколько иной, чем в кинетическом режиме второго порядка (уравнение 2.19). Однако и здесь движущей силой катализа остается свободная энергия взаимодействия Е-Н именно в переходном состоянии реакции (а не в промежуточном комплексе). Действительно, чем более термодинамически выгодным будет внутримолекулярное взаимодействие Е-К в активированном состоянии (чем более отрицательные значения примет величина АОз внутр). тем более благоприятным должно быть отношение VI/ии для ферментативной реакции [см. (2.21)]. Это связано с тем (см. рис. 12), что барьер свободной энергии активации ферментативной реакции (ДО/. внутр) в этом случае уменьшается (по сравнению с ДОи) и, следовательно, скорость процесса [уравнение (2.20)] возрастает. Наоборот, при заданном значении ДО .ппутр термодинамически более благоприятное взаимодействиеЕ -Н в исходном состоянии реакции (фермент-субстратный комплекс ХЕ-КУ) будет тормозить ее протекание. Так, более отрицательные значения Д(3 приводят к неблагоприятным значениям VI /иц в отношении ферментативного процесса [уравнение (2.21)]. Это связано с тем, что активационный барьер Д01% утр (см. рис. 12), определяющий скорость превращения фермент-субстратного комплекса [уравнение (2.20)], при этом возрастает. [c.41]

    Нерешен также и вопрос о ковалентном катализе. В ряде ферментативных реакций образуются промежуточные соединения с ковалентной связью между ферментом и субстратом [29, 48, 49]. В качестве примера можно указать на протеазы, где в ходе ферментативной реакции образуется ацилфермент (см. гл. IV). Трудно сказать, почему реакция не протекает прямо, а идет через образование промежуточного соединения с ферментом (или коферментом). В этом отношении Дженкс [29] указал, что именно здесь могут быть заложены важные химические закономерности ферментативного катализа, которые в настоящее время почти или вообще не поняты . Не исключено, однако, что причина простая, а именно, что в ковалентно-связанном промежуточном соединении легче, чем в сорбционном фермент-субстратном комплексе, реализуются различного рода механизмы напряжения, которые позволяют использовать свободную энергию сорбции химически инертных субстратных фрагментов на ферменте на понижение активационного барьера скоростьлимитирующей химической стадии (см. 4 этой главы). Возможно, наличие промежуточных соединений в ферментативных механизмах отражает лишь сложную картину участия в реакции большого числа функциональных групп, многие из которых вообще склонны образовывать ме-тастабильные продукты (как, например, имидазольная группа [29]). Иными словами, образование промежуточных соединений хотя и сопровождает ферментативный катализ, но, возможно, не имеет прямого отношения к наблюдаемым ускорениям. [c.66]

    Схема (117) отражает лишь основные пути гидролиза целлюлозы под действием полиферментной целлюлазной системы. Здесь не показаны процессы образования и превращения соответствующих фермент-субстратных комплексов, ингибирование или активация ферментов промежуточными метаболитами и продуктами гидролиза (см. [19, 20]), адсорбция (в том числе и непродуктивная) целлюлаз на поверхности субстрата н связанные с этим регуляторные явления [21—23] и т. д. Изучая данные закономерности по отдельности, [14—26], можно сделать вывод, что схема (117) является общей для ферментативного гидролиза целлюлозы независимо от состава целлюлазных комплексов и их происхождения. [c.125]

    Прямое кинетическое подтверждение образования промежуточных соединений и Х2 в катализе гидролиза эфиров N-aцилиpoвaнныx-L-аминокислот получено из анализа кинетики реакции на длинах волн поглощения промежуточных соединений ( 290 нм) [9]. Так, при смешивании раствора а-химртрипсина с метиловым эфиром Ы-ацетил-1-фенилаланина наблюдается быстрое (кинетически неразрешенное) спектральное изменение (по-видимому, образование первичного фермент-субстратного комплекса Х ), за которым следует медленная кинетика образования ацилфермента (рис. 64,а). В стационарной фазе реакции в условиях,, когда расходом субстрата можно пренебречь, концентрация ацилфермента сохраняется постоянной последующий расход субстрата приводит к- исчезновению в растворе промежуточных соединений (рис. 64,6) [9]. [c.198]

    Исследование ферментативных реакций в предстационарном режиме нуждается в специальной экспериментальной технике, поскольку используемые методы должны иметь достаточно высокую временную разрешающую способность. Мертвое время экспериментальной методики должно быть существенно меньше времени протекания реакции в предстационарном режиме. В качестве примера рассмотрим случай реакции с участием одного промежуточного соединения. Экспериментальную методику можно считать удовлетворительной, если ее мертвое время будет меньше величины т [см. уравнение (5.109)]. Используя наиболее характерные для ферментативного катализа значения констант скоростей, можно оценить величину т. Величина константы скорости образования фермент-субстратного комплекса ( 1) для большинства ферментативных реакций лежит в диапазоне 10 —10 М" X Хс (см. гл. VII). Типичное значение Кт, характерное для многих ферментативных реакций, равно 10 М. Если положить минимальную концентрацию субстрата равной 10" М (эту концентрацию еще можно определить чувствительным спектрофотометрическим методом), зна-чениет будет лежать в диапазоне 10 —10" с. Это показывает, что для исследования предстационарной кинетики ферментативных реакций необходима специальная экспериментальная техника, позволяющая регистрировать кинетические процессы в микро- и миллисекундном временном диапазоне. [c.204]

    Другой важный результат был получен методами нестационарной кинетики — это константы скоростей весьма быстрой бимолекулярной стадии образования промежуточного фермент-субстратного комплекса (табл. 34). Можно было бк думать, согласно (7.2), что эти значения гораздо больше величины, которую дает оценка их нижнего предела. Однако из табл. 34 видно, что наиболее распространенные значения кх = 10 — 10 М" -с и, следовательно, они того же порядка, что и величины Кт.каж, опрбделяющие общую скорость ферментативной реакции (см. табл. 33). [c.269]

    В последнее время работами Хесса с сотрудниками [5—7] на примере а-химотрипсина был развит новый метод изучения кинетики начальных стадий ферментативных реакций, получивший название метода вытеснения профлавина . Метод основан на том факте, что краситель профлавин (3,6-диаминоакридин) при связывании с а-химотрипсином в водном растворе изменяет свой спектр поглощения в ультрафиолетовой области. Величина разностного спектра поглощения, имеющего максимальное значение при длине волны 465 нм, пропорциональна -концентрации комплекса фермент-профлавин. Введение в систему фермент-профлавин субстрата, конкурирующего с красителем за связывание на активном центре а-химотрипсина, приводит к двум последовательным процессам вытеснения профлавина. Первый, очень быстрый процесс, заключается в обратимом вытеснении красителя из комплекса его с ферментом за счет образования нековалентного фермент-субстратного комплекса. Второй процесс, времена прохождения которого лежат обычно в пределах разрешения установок типа остановленной струи , вызван химическим взаимодействием субстрата с ферментом (например, образованием ацилферментного промежуточного соединения), что приводит к дополнительному уменьшению концентрации комплекса фермент-профлавин. Изучение кинетики второго процесса при различных концентрациях субстрата в дополнение к изучению кинетики ферментативной реакции в стационарном режиме позволяет сделать заключения о стадийности изучаемой реакции, а также найти значения констант скоростей промежуточных стадий ферментативной реакции. [c.188]

    Обработка фермент-субстратного комплекса альдолазы с диоксиаце-тонфосфатом боргидридом натрия при pH 6 (0°С) приводит к образованию ковалентной связи между белком и субстратом. Эти и другие данные свидетельствуют о промежуточном образовании шиффового основания (рис. 7-10). Использовав меченный С субстрат и восстановление боргидридом натрия [уравнение (7-41)], получили фермент, у которого был помечен лизин активного центра. Локализацию радиоактивной метки определяли анализом последовательности аминокислотных остатков и установили, что остаток меченого лизина занимает положение 227 в цепи, состоящей из 361 аминокислоты. [c.163]

    В полиферментных системах, примером которых является цел-люлазная (см. схему 117), установление стационарного состояния по отдельным компонентам обычно происходит в двух совершенно различных временных масштабах. Первым устанавливается стационарное состояние по фермент-субстратным комплексам (на схеме 117 не показано), когда скорости их образования и распада значительно превосходят разницу между этими скоростями (здесь и далее рассматривается кинетика при избытке субстрата по сравнению с концентрациями ферментов в системе). Как правило, данное условие начинает выполняться уже в начальный период реакции (в секундном диапазоне или еще быстрее), когда система в целом еще нестационарна по промежуточным метаболитам. Переход всей полиферментной системы в стационарное состояние, в котором концентрации промежуточных метаболитов практически не меняются во времени (точнее, когда скорости их образования и распада значительно превосходят разницу между этими скоростями), происходит обычно достаточно медленно (нередко стационарное состояние вообще не достигается), для большинства изученных целлюлолитических реакций в реальных условиях в течение нескольких часов [24—26]. Это позволяет считать при анализе предстационарной кинетики полиферментных систем, что стационарное состояние по фермент-субстратным комплексам устанавливается практически мгновенно и что образование и распад промежуточных метаболитов происходит в соответствии с обычным уравнением Михаэлиса — Ментен. Тогда в условиях превраи ения исходного субстрата на небольшую глубину, принимая гомогенное распределение ферментов и субстратов в целлюлазной системе и считая превращения практически необратимыми, кинетику ферментативного гидролиза целлюлозы (см. схему 117) описывает следующая система дифференциальных уравнений  [c.125]

    В общем случае для ферментативной реакции существует оптимальное значение pH при увеличении или уменьшении pH по сравнению с его оптимальным значением максимальная скорость Уд падает. В нейтральной области pH влияние его изменений на реагирующую систему носит обычно обратимый характер, но при предельных значениях pH (соответствующих сильнокислой или сильнощелочной среде) белки подвергаются необратимой денатурации. Влияние обратимых изменений pH на кинетику можно объяснить изменениями степени ионизации субстрата если же в исследуемом интервале pH степень ионизации субстрата не меняется, то изменения в кинетике объясняются ионизацией фермент-субстратного комплекса. Если фермент-суб-стратный комплекс существует в трех состояниях с разным числом протонов и если только промежуточная форма разлагается с образо ванием продуктов, то уравнение, описывающее влияние pH на максимальную скорость реакции, можно вывести из схемы [c.322]

    Здесь [E]f —это суммарная концентрация фермента, т. е. концентрация свободного фермента Е и фермент-субстратного комплекса ES.. Уравнение (6-6) справедливо только при насыщении субстратом, т. е. в условиях, когда концентрация субстрата достаточно высока, чтобы, практически весь фермент перевести в промежуточное соединение ES. Рассматриваемый процесс не является реакцией первого порядка, так как исчезающий комплекс ES вновь образуется из свободного фермента. Однако константа скорости k может быть сопоставлена с KOH TaHTaMif скорости первого порядка, которые мы рассматривали в предыдущее разделе, и является мерой скорости работы фермента. Если концентрация [E]f выражена в молях активных центров на 1 л (т. е. через фактическую молярную концентрацию фермента, умноженную на число активных центров в молекуле фермента), то константу k называют числом-оборотов или молекулярной активностью [6]. [c.8]

    Наиболее изученным ферментом семейства сериновых протеаз является химотрипсин. Реакции гидролиза, катализируемые этим ферментом, включают по крайней мере три кинетически различимые стадии [уравнение (6.8)]. На первой стадии, про-текаюш,ей с очень высокой (контролируемой диффузией) скоростью, образуется нековалентный фермент-субстратный комплекс. На второй стадии (стадии ацилирования) ацильная группа субстрата переносится на гидроксил серина, входящего в активный центр фермента, с одновременным выделением первого продукта (Pi) — аминной части амидного субстрата. Вслед за этим происходит гидролиз промежуточного ацилфермента с регенерацией свободного фермента и выделением карбоновой кислоты— второго продукта реакции гидролиза (Рг)  [c.142]

    В ходе этой реакции возможен дейтериевый обмен с растворителем, однако он идет с довольно низкой скоростью. При использовании в качестве субстрата о-манделата и проведении реакции в среде тритированного растворителя меченые о- и ь-продукты образуются в эквимолярных количествах, что указывает на существование симметричного промежуточного соединения. Эти данные свидетельствуют об образовании промежуточного а-карбаниона, причем в роли акцептора протона выступает ферментативное основание. Лнмнтируюи1,ей стадией является перенос протона, поскольку первичный дейтериевый изотопный эффект достигает 5. Внутри фермент-субстратного комплекса эпимеризация идет с константой скорости порядка 10 с , что соответствует верхнему пределу скорости ферментативного переноса протона. [c.151]

    В число основных факторов, определяющих начальную скорость ферментативной реакции, входят концентрация фермента и субстрата, pH и температура, наличие активаторов и ингибиторов, причем концентрация субстрата является одним из наиболее важных. График зависимости между начальной скоростью и концентрацией субстрата выражается в виде ветви равнобочной гиперболы. Краеугольным камнем ферментативной кинетики является теория Михаэлиса-Ментен о механизме взаимодействия фермента и субстрата через образование про.межуточного фермент-субстратного комплекса, что является исходным моментом самых современных концепций. Теория исходила из факта, что равновесие между ферментом и субстратом достигается быстрее, чем разрушается фермент-субстратный комплекс. Однако анализ, проведенный Бригсом и Холдейном, показал, что в любой момент реакции скорости образования и распада фермент-субстратного комплекса практически равны, то есть достигается стационарное состояние, в котором концентрация промежуточного соединения постоянна. На основании этого было предложено уравнение, выполняемое для многих механизмов реакций, катализируемых ферментами, которое на- [c.203]

    Промежуточным продуктом этой реакции является шиффово основание, образованное в результате взаимодействия карбонильной группы диоксиацетона с е-амииогруппой лизинового остатка фермента Шиффово оснсвание является активной формой диоксиацетона, вступающей в альдольную конденсацию с альдозой. В пользу этого свидетельствует тот факт, что при восстановлении фермент-субстратного комплекса действием ЫаВНд и последующем гидролизе выделен 6-N-(p-rли-церил)-лизин. [c.374]

    Большое значение для эффектианости действия фермента может иметь сопряженный кислотно-осноаный катализ, а также нуклео-фильный катализ с образованием реакционноспособного промежуточного соединения- Немалую роль играет и фактор микросреды. Совокупность факторов, вносящих вклад а повышение каталитической активности ферментов, обеспечивает снижение энергетического барьера реакции. Согласно получившей весьма широкое признание концепции, снижение энергетического барьера достигается благодаря стабилизации переходного состояния или, точнее, благодаря приближению структуры субстрата а фермент-субстратном комплексе к структуре переходного состояния. Приближение к структуре переходного состояния требует в общем случае затраты энергии согласно рассматриваемой концепции, необходимая энергия обеспечивается за счет части энергии связывания субстрата с ферментом. [c.188]

    Однако первая стадия наиболее ответственна, поскольку сама вероятность каталитического акта строго определяется возможностью образования комплекса Михаэлиса. Первично образующееся соединение фермента с субстратом носит название комплекс не вследствие его прямого отношения к классу комплексных соединений, как это понимается в химии, а, скорее, потому, что реальная природа этого соединения пока неизвестна. В огромном большинстве случаев также неизвестны достаточно точно те химические взаимодействия, которые обеспечивают образование комплекса неизвестны и механизмы первичного перераспределения электронов в молекуле субстрата на стадии возникновения первичного комплекса. Более того, до сравнительно недавнего времени мы не имели прямых экспериментальных доказательств реальности существования самих комплексов, которое вытекало в основном из кинетических данных. В 1943 г. были проведены спектральные исследования, свидетельствовавшие о возможности образования промежуточных фермент-субстратных соединений например, в опытах Чанса [13] спектрофотометрическим методом было показано образование комплекса пероксидазы с Н2О2. Были попытки обнаружить фермент-субстратный комплекс методом зонального электрофореза [14]. Однако все эти результаты получены непрямыми методами. В 1963 г. японским авторам Яги и Озава [15] удалось получить прямые доказательства реальности комплекса Михаэлиса. Они выделили стабильный в анаэробных условиях кристаллический комплекс оксидазы D-аминокислот (D-аминокислота О 2 — окси-доредуктаза, КФ 1.4.3.3) с D-аланином (рис. 6). Этот комплекс содержал, помимо апофермента и субстрата, флавинадениндинукле- [c.48]


Смотреть страницы где упоминается термин Фермент-субстратные промежуточные комплексы: [c.397]    [c.35]    [c.144]    [c.713]    [c.320]    [c.130]    [c.132]    [c.145]    [c.360]    [c.164]    [c.49]   
Смотреть главы в:

Ферментативный катализ -> Фермент-субстратные промежуточные комплексы


Ферменты Т.3 (1982) -- [ c.109 , c.111 ]




ПОИСК





Смотрите так же термины и статьи:

Промежуточный комплекс



© 2024 chem21.info Реклама на сайте