Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Растворение лиофильных коллоидов

    Коллоидные системы по своим свойствам приближаются к обычным молекулярным растворам, получаемым при растворении высокомолекулярных веществ. К последним относятся белки, каучук, различные синтетические продукты полимеризации и поликонденсации. В растворах таких веществ достигается молекулярная степень дисперсности, однако сами молекулы настолько велики, что их растворы обладают рядом свойств лиофобных коллоидов. Эти растворы называют иногда лиофильными коллоидами благодаря их большей устойчивости по сравнению с лиофобными коллоидами, что свидетельствует о большем сродстве указанных веществ к растворителю. [c.8]


    Растворение лиофильных коллоидов [c.337]

    Растворение лиофильных коллоидов значительно отличается от образования золей дисперсоидов. Вещество лиофильных коллоидов может самопроизвольно переходить в раствор, не требуя предварительного измельчения и пептизаторов. Например, желатина растворяется в воде, эфиры целлюлозы — в органических жидкостях. Растворимость сильно возрастает с увеличением температуры. [c.337]

    Тепловой баланс растворения лиофильных коллоидов слагается из 1) скрытой теплоты плавления и 2) теплоты растворения расплавленного твердого вещества в насыщенном растворе. [c.21]

    Оболочка из полярных групп на поверхности мицелл сообщает им гидрофильные свойства, обеспечивает малую поверхностную энергию и создает сродство мицелл к дисперсионной среде. Указанные особенности состояния растворов МПАВ при концентрациях выше ККМ позволяют отнести их к классу лиофильных коллоидов они являют собой пример термодинамически равновесных и обратимых ультра-микрогетерогенных систем. В таких системах коллоидно растворенное (мицеллярное) ПАВ находится в термодинамическом равновесии с истинно (молекулярно) растворенной частью, т. е. существует равновесие мицеллы молекулы (ионы), которое может смещаться в ту или иную сторону при изменении условий. Сами же мицеллы — термодинамически стабильные обратимые образования, которые возникают в области ККМ и распадаются при разбавлении раствора. [c.39]

    Основываясь на указанных особенностях двух систем, раНее разделяли эти системы на лиофобные и лиофильные коллоиды. В главе X будет показано, что найденные закономерности в лиофобных системах оказались непригодными для объяснения процессов растворения высокомолекулярных соединений и свойств их растворов. [c.165]

    Таким образом, коллоидные системы оказались разделенными на дисперсные системы и высокомолекулярные вещества с их растворами это деление существует и в настоящее время. Не следует думать, что рассмотрение растворов высокомолекулярных веществ как лиофильных коллоидов, обладающих высокой сольватацией, было простой ошибкой как и во всяком значительном этапе развития науки, в этом представлении была определенная доля истины. В настоящее время имеются довольно подробные данные о количестве прочно связанного растворителя в растворах простых электролитов, неэлектролитов, высокомолекулярных веществ и лиофобных золей отношение молекулярного веса растворенного вещества [c.11]


    В соответствии с особенностями свойств (растворение с сильным набуханием, образование растворов с очень высокой вязкостью, студне-образование и др.) все высокомолекулярные органические соединения были выделены в группу лиофильных коллоидов в отличие от низкомолекулярных соединений, способных к образованию только лиофобных коллоидов. [c.50]

    Благодаря гидратированным полярным группам поверхность мицелл имеет гидрофильные свойства и очень малую межфазную свободную энергию. Это создает сродство мицелл к дисперсионной среде и сообщает системе свойства лиофильных коллоидов. Указанные особенности состояния растворов мыл и мылоподобных ПАВ выше ККМ позволяют считать их двухфазными ультрадисперсными системами, которые являют собой пример термодинамически устойчивых лиофильных коллоидных систем. В таких растворах коллоидно растворенное (мицеллярное) ПАВ находится в термодинамическом равновесии с истинно растворенной частью, т. е. существует равновесие  [c.110]

    Лиофильные коллоиды, выделившиеся из дисперсной среды, при повторном внесении в нее возвращаются из состояния студня в состояние золя. Это — обратимые коллоиды. Обратимое растворение может быть вызвано даже у необратимых коллоидов, если их соединить с обратимыми. Например, если прибавить к раствору соли серебра небольшое количество желатины, белка или некоторых продуктов распада его и восстановить серебро до образования золя, то степень дисперсности коллоидного серебра в этих условиях получения оказывается более высокой и золь менее подвержен влияниям факторов, вызывающих коагуляцию. Золь серебра можно путем выпаривания превратить в твердый продукт, который обладает способностью снова растворяться в воде, образуя золь. Вследствие того защитного действия, которое в подобных случаях оказывают обратимые коллоиды, повышая стабильность необратимых, их называют защитными коллоидами. При применении защитных коллоидов золи могут быть получены с более высокими концентрациями, чем обычно. Примером концентрированного золя, получаемого с применением защитного коллоида, является медицинский препарат колларгол, содержащий свыше 70% серебра. [c.391]

    РАСТВОРЕНИЕ И ПЕПТИЗАЦИЯ ЛИОФИЛЬНЫХ КОЛЛОИДОВ [c.301]

    Вторая группа — лиофильные коллоиды — проявляет способность к набуханию и растворению. Природа их растворов до конца 30-х годов текущего столетия не была полностью выяснена. [c.7]

    Набухать могут и мицеллы лиофильного коллоида (например, мыла), когда они поглощают (солюбилизируют) жидкость иной полярности, чем дисперсионная среда. Аналогичное наблюдается и у истинных растворов дифильных полимеров, содержащих растворенное вещество в виде глобул (например, в растворах желатина). Явление набухания дисперсных частиц (путем солюбилизации жидкой фазы) может быть констатировано измерением вязкости дисперсной системы, которая возрастает с увеличением объема диспергированного тела. [c.453]

    Рассмотрение результатов опытных работ, выполненных советскими учеными, главным образом В. А. Каргиным и его сотрудниками, заставляет отказаться от прежнего деления коллоидов на два класса и изменить взгляд на природу растворов веществ, называвшихся раньше лиофильными коллоидами. Основной вывод, вытекающий из этих работ, заключается в том, что в самопроизвольно образующихся растворах высокополимеров отсутствуют поверхности раздела между частицами растворенного вещества и растворителя, следовательно, эти растворы являются системами гомогенными. Так как коллоидные системы характеризуются микрогетерогенностью, т. е. наличием поверхности раздела между частицами дисперсной фазы и дисперсионной средой, то растворы высокополимеров не могут рассматриваться как коллоидные системы они представляют собой истинные растворы. [c.219]

    Описанное выше последовательное течение стадий набухания, растворения, застудневания, синерезиса и возможность обратного перехода от синерезиса к раствору (золю) свойственно не всем коллоидным системам. В этом отношении лиофильные коллоиды делятся на три группы обратимые, необратимые и не вполне обратимые. [c.25]

    Изучение свойств растворов высокомолекулярных соединений сыграло огромную роль в развитии коллоидной химии. Первые исследования диффузии, осмоса, оптических свойств коллоидов были проведены с растворами желатины, агара, целлюлозы, т. е. с растворами ВМС. При этом выяснилось, что растворы ВМС более устойчивы по сравнению с золями. В течение длительного времени это объяснялось высоким сродством растворенных веществ к растворителю (дисперсионной среде) и связанной с этим высокой сольватацией. Это нашло отражение в исторически сложившемся названии таких растворов — лиофильные золи или обратимые коллоиды в отличие от лиофобных золей — обычных (необратимых) коллоидных систем. Позднее была найдена истинная причина термодинамической устойчивости лиофильных золей — отсутствие поверхности раздела фаз и поверхностной энергии — их гомогенность. Было показано также, что, хотя свойства растворов высокомолекулярных соединений в значительной степени определяются их сродством к растворителю, доля растворителя, вошедшего в сольватные оболочки, не очень велика. Поэтому правильным следует считать термин растворы ВМС или молекулярные коллоиды , а не лиофильные золи . [c.435]


    Высокомолекулярные соединения (ВМС). К ним относятся природные и синтетические полимеры с молекулярной массой от десятков тысяч до нескольких миллионов. Это белки, полисахариды, каучук, синтетические полимеры. Размер молекул ВМС соответствует частицам коллоидной степени дисперсности. Растворы этих веществ часто называют молекулярными коллоидами, однако на самом деле ВМС образуют истинные растворы, т. е. однофазные системы. От коллоидных растворы ВМС отличает большая устойчивость, связанная с наличием в их молекулах большого количества лиофильных групп, более высокая концентрация растворов, способность сухого вещества набухать и переходить в растворенное состояние. Тем не менее растворы ВМС имеют и некоторые свойства коллоидов. [c.21]

    Последний тип структур — молекулярные коллоиды. Дисперсная фаза этих коллоидов представлена молекулами органических веществ гигантских размеров и массы (макромолекулами). Если растворы таких веществ сильно разбавить, то они приобретают характер истинных растворов. Именно для этих веществ не существует понятия предела растворимости. Растворение проходит через стадию набухания. Коллоиды, как правило, обратимы и лиофильны. Частицы дисперсной фазы окружены гидратной оболочкой, т. е. молекулами воды. Представители молекулярно-коЛлоидных веществ — каучуки, некоторые белки, пластмассы, желатин, латексы и т. д. [c.26]

    Удовлетворительного уравнения, которое позволило бы вычислить скорость растворения лиофильных коллоидов, еще пет. Значение измерения скорости растворения каучука отмечено в работе В. Молоденского и П. Михайлова [9], которыми предложен был аппарат для измерения скорости растворения на принципе одновременного экстрагирования нескольких образцов в одинаковых условиях. [c.384]

    Растворы высокомолекулярных соединений являются термодинамически устойчивыми (лиофильными) коллоидными система-ми — молекулярными коллоидами. В соответстви с закономерностями образования лиофильных систем растворение полимеров происходит самонроизвольпо (самопроизвольное диспергирование). Термодинамическая устойчивость, обратимость лиофильных коллоидов указывают иа воз.можность применения к таким системам правила фаз Гиббса в той же форме, что и для истинных растворов. [c.320]

    Жидкая фаза, выделяющаяся при синерезисе, не является чистым растворителем. Она содер5кит в растворенном состоянии имеющиеся в студне электролиты и по существу является золем данного лиофильного коллоида, но очень малой концентрации. [c.277]

    Внутри макромолекулы находятся ионизированные сульфо-группы, придающие ей отрицательный заряд, уравновешиваемый при pH 7 окружающим облаком положительно заряженных катионов. Благодаря такому двойному электрическому слою возникает типичный для лиофильных коллоидов электро-кинетический потенциал, величина которого характеризуется электрофоретической скоростью частиц. Структура обусловливает поперечное набухание макромолекулы, выражаемое в проявлении лигносульфонатами полиэлектролитного эффекта. Он особенно заметен при растворении в дистиллированной воде — в этом случае увеличивается ширина двойного слоя и, как следствие, усиливается разбухание молекулы. В солевых же растворах, напротив, макромолекула стягивается и ее полиэлектро-литный эффект уменьшается. [c.234]

    Отдельные белки обладают значительным разообразием в аминокислотном составе, химических свойствах, величине молекулярного веса и физиологической роли. Такое же разнообразие наблюдается и в отношении физико-химических свойств белков. Большинство белков имеет ясно выраженный характер лиофильных коллоидов в клетках и тканях белки находятся или в состоянии золя, или в состоянии геля. Некоторые белки образуют коллоидные растворы при растворении в воде или в спирте, для других — золеобразование возможно лишь в присутствии электролитов. Однако, наряду с растворимыми белками, [c.147]

    Рассмотренные выше явления старения лиофильных коллоидов, приводящие к разделению студня на две фазы, принципиально ничем не отличаются от коагуляции, ибо самый факт желатинирования и синерезиса указывает на потерю частицами агрегативной устойчивости. Однако такую коагуляцию лиофильных коллоидов вряд ли можно связывать с дегидратацией. Особенно ясно это следует из опытов над геранином, для которого, как было показано выше, синерезис дает вполне определенное число, характеризующее количество связанной жидкости, и это число соответствует количеству воды, в которой 1 г растворенного геранина образует систему, не способную к синерезису. Таким образом, если гидратацию увязывать с устойчивостью, то необходимо внести какую-то количественную и качественную определенность в самое понятие гидратации. [c.363]

    Жидкая фаза, выделяющаяся при синерезисе, не является чистым растворителем. Она содержит в растворенном состоянии имеющиеся в студне электролиты, а также небольшие количества лиофила (молекулярнорастворимую его часть, т. е. наименее полимерную фракцию коллоида) и по существу является золем данного лиофильного коллоида, но очень малой концентрации. [c.461]

    Эти молекулы, представляющие собой длинные цепи, имеют характерные свойства лиофильных коллоидов. Их растворение сопровождается интенсивным набуханием растворителя, и если они вообще растворимы, то их разбавленные растворы имеют высокую вязкость. Они показывают большую склонность к образованию пленок и часто очень эластичны. Тогда как нет оторые непредельные соединения, например стирол, акриловые эфиры, виниловые эфиры и т. п., в зависимости от способа полимеризации могут давать геми-, мезо- илп эйкоколлоиды, другие вещества дают только гемиколлоиды. [c.796]

    Лиофильными принято называть такие коллоиды, частицы которых в большом количестве связывают молекулы дисперсионной среды, например некоторые мыла в водной среде. Сюда относили раньше и растворы высокомолекулярных органических соединений (белки, целлюлоза и ее эфиры, каучук, многие искусственно получаемые соединения). Однако, как показало изучение внутреннего строения и свойств таких систем, производившееся в недавнее время, и, в частности, работы В. А. Каргина, Добри и Флори, эти системы представляют собой истинные растворы, т. е. молекулярно-дисперсные, а не коллоидные системы. Они являются гомогенными системами. Характерные отличия их свойств от свойств других групп истинных растворов обусловливаются в основном сильным различием в величине частиц растворителя и растворенного вещества и строением этих частиц, представляющих собой очень длинные и гибкие молекулы (цепное строение). Переход их в раствор облегчается высокой степенью сольватации. Благодаря большому размеру молекул растворы этих веществ по многим свойствам являются близкими коллоидным растворам и образуют самостоятельную группу растворов — растворы высокомолекулярных соединений. Более детально свойства этих растворов будут рассмотрены в гл. XVII ( 244). [c.508]

    Многочисленными работами доказано суш ествование сольватной оболочки вокруг растворенных частиц нитроцеллюлозы. Наличие такой оболочки вообще присуш е всем лиофильным золям, частным случаем которых являются и органозоли нитроцеллюлозы. В отличие от лиофобных золей растворы нитроцеллюлозы (и вообш е эфиров целлюлозы) не имеют резко ограниченной поверхности раздела частица/раствор для находящихся в растворе мицелл. Наличие такой поверхности в лиофобных золях обусловливает взаимодействие коллоидно-распределенного вещества с дисперсионной средой не в массе коллоидных частиц, а лишь на их поверхности. Этим, в частности, объясняется и относительная неустойчивость лиофобных коллоидных систем в сравнении, например, с золями высокомолекулярных веществ. Для последних характерно наличие взаимодействия всей массы вещества (или соответственно всех отдельных групп, составляющих молекулу) с дисперсионной средой (растворителем). Это ясно следует для целлюлозы, например, из процессов этерификации и омыления эфиров. В этих процессах в реакцию вступают все гидроксильные группы, признаком чего является изменение как химического состава, так и рентгенограмм целлюлозы. Растворы высокополимерных веществ относятся к классу коллоидов (а пе истинных растворов) не вследствие иного агрегатного состояния вещества, как это имеет место у лиофобных коллоидов, а лишь благодаря большим размерам молекул (цепное строение молекул), обусловливающим отличие их от истинных растворов. [c.204]

    Кратко изложенный здесь принцип независимости поверхностного действия является для коллоидов очень важным практическим правилом, предохраняющим от возможных ошибок при исследовании их свойств. Особенно широкое прилтенение этот принцип находит при исследовании лиофильных систем, основные проблемы которых (сольватация, набухание, растворение, мицеллооб-разование, застудневание и др.) могут быть правильно решены только на основе этого принципа. Это объясняется тем, что лио-фильиые коллоиды состоят из дифильных молекул сложных органических веществ высокого молекулярного веса. Этот принцип находит себе применение при решении и других физико-химических проблем (испарения, растворения). На этом принципе, в частности, построена очень интересная теория растворов Лангмюра. [c.120]


Смотреть страницы где упоминается термин Растворение лиофильных коллоидов: [c.12]    [c.12]    [c.259]    [c.304]    [c.25]    [c.13]    [c.269]   
Смотреть главы в:

Учение о коллоидах Издание 3 -> Растворение лиофильных коллоидов

Химия лаков, красок и пигментов Том 2 -> Растворение лиофильных коллоидов




ПОИСК





Смотрите так же термины и статьи:

Коллоиды

Коллоиды лиофильность

Коллоиды лиофильные



© 2025 chem21.info Реклама на сайте