Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

РАБОТА 12. Фосфор, сурьма, висмут

    Работа 12 ФОСФОР, СУРЬМА, ВИСМУТ [c.172]

    Работа 5. АЗОТ, ФОСФОР, СУРЬМА И ВИСМУТ [c.77]

    При работе с белым фосфором и некоторыми соединениями фосфора, сурьмы и висмута необходимо предпринимать меры предосторожности, так как они являются ядовитыми веществами. [c.174]

    Цель работы. Определение свойств кислородных соединений фосфора, сурьмы и висмута. [c.131]

    В качестве стабилизаторов используют самые различные химические соединения. Это и окислители (кислород, перекись водорода), и ионы металлов-ингибиторов (ванадия, висмута, молибдена, ниобия, рения, мышьяка, сурьмы), и соли серы, селена, таллия, ртути, и органические соединения серы, азота, фосфора, и поверхностно-активные вещества. Однако хороших стабилизаторов еще очень мало, так как многие из применяемых в настоящее время, будучи каталитическими ядами, сильно замедляют скорость металлизации. Исходя из этих соображений полезность действия стабилизаторов можно выразить следующим соотношением Лд=ит —1, где и и т — соответственно средняя скорость осаждения металла и продолжительность стабильной работы раствора (индукционный период разложения) в присутствии стабилизатора, а и и тР — то же, но без стабилизатора. При Л =0 добавка предполагаемого стабилизатора не оказывает ни положительного, ИИ отрицательного влияния, а при —1<Л <0 — ухудшает эффективность использования раствора химической металлизации. При Л >0 стабилизатор явно полезен, и чем большее значение Л , тем больше полезность стабилизатора, тем ближе он к идеальному. [c.30]


    В предыдущих работах [1—3] были изучены раман-спектры растворов треххлористых мышьяка и сурьмы. С целью дальнейшей проверки наблюденных закономерностей в настоящей работе были исследованы раман-спектры треххлористого фосфора и хлористого висмута в различных растворителях. [c.249]

    Для работы требуется-. Штатив с пробирками. — Щипцы тигельные. — Крышки от фарфоровых тиглей 3 шт. — Асбест листовой. — Шпатель. — Бумага. — Бумага лакмусовая. — Окись хрома. — Алюминий в порошке. — Фосфат натрия однозамещенный. — Фосфат натрия двухзамещенный. — Трихлорид фосфора. — Пентахлорид. фосфора. — Сера в порошке. — Уголь в порошке.— Нитрат калия в порошке. — Нитрат калия кристаллический. — Смесь кристаллических нитрата и карбоната калия (1 1). — Едкое кали 30%-ный раствор. — Соляная кислота конц. и 2Л р-р. — Серная кислота 2N р-р. — Иодид калия 0,5]У р-р. — Нитрат калия насыщенный р-р. — Фосфат натрия ХМ р-р.— Ортофосфат натрия (однозамещенный) 1Л/ р-р. — Ортофосфат натрия (двухзамещенный) ХЫ р-р. — Сульфид аммония 2М р-р. — Хлорид висмута 0,ЪМ р-р.— Хлорид сурьмы (3) 0,ЪМ р-р. — Бихромат калия ХМ р-р. — Нитрат калия IЛ р-р. — Биарсенат натрия О.ЪМ р-р. — Арсенит натрия 0,5]У р-р. — Раствор лакмуса нейтральный. — Сероводородная вода. — Молибденовая жидкость. [c.232]

    Для работы требуется Прибор (см. рис. 75).—Штатив с пробирками.— Щипцы тигельные.—Воронки.—Чашка фарфоровая.—Крышки от фарфоровых тиглей, 3 шт.—Асбест листовой.—Шпатель.—Бумага.—Бумага лакмусовая.—Бумага фильтровальная.—Окись хрома.—Алюминий в порошке.— Цинк в порошке.—Перманганат калия,—Фосфат натрия однозамещенный.— Фосфат натрия двузамещенный.—Трихлорид фосфора.— Пентахлорид фосфора.—Сера в порошке.—Уголь в порошке.—Нитрат калия в порошке.—Нитрат калия кристаллический.—Смесь кристаллических нитрата и карбоната калия (1 1).—Едкое кали, 30%-ный раствор.—Соляная кислота концентрированная и 2 н. раствор.—Серная кислота, 2 н. раствор.—Иодид калия, 0,5 н. раствор.—Нитрат калия, насыщенный раствор.—Фосфат натрия, 1 и. раствор.— Ортофосфат натрия (однозамещенный), 1 н. раствор.—Ортофосфат натрия (двузамещенный), 1 н. раствор.—Сульфид аммония, 2 н. раствор.—Хлорид висмута, 0,5 н. раствор.—Нитрат висмута, 0,5 н. раствор.—Сульфат марганца, 0,5 н. раствор.—Хлорид сурьмы (III), 0,5 н. раствор.—Бихромат калия, [c.251]


    Для работы требуется П-образный стеклянный прибор, наполненный двуокисью азота.—Аппарат Киппа для получения водорода.—Штатив с пробирками.—Трубка газоотводная с пробкой.—Щипцы тигельные.—Промывалка.—Фарфоровая чашка.—Цилиндр мерный емк. 25 мл.—Цилиндры со стеклами, 2 шт.—Колба емк. 100 мл.—Мерная колба емк. 250 мл.—Стакан емк. 400 мл, 2 шт.—Колбы конические емк. 100 мл, 3 шт.—Пипетка на 20—25 мл.— Кристаллизатор большой.—Палочка стеклянная.—Цинк гранулированный.— Медные стружки.—Фосфор красный.—Сульфат железа (II) перекристаллизованный.—Уголь кусковой.—Азотная кислота дымящая.—Азотная кислота отн. веса 1,41.—Азотная кислота (1 1).—Серная кислота концентрированная.—Серная кислота, 2 н. и 30%-ный растворы.—Соляная кислота концентрированная и 2 я. раствор.—Нитрат висмута, 0,5 н. раствор,—Нитрат серебра, 0,1 н. раствор.—Едкий натр, 0,1 и. титрованный раствор и 2 и. раствор.—Нитрит натрия, насыщенный раствор.—Сульфат железа, насыщенный раствор.—Хлорид сурьмы, 0,5 н. раствор.—Ортофосфорная кислота, 1 н. раствор.—Метафосфорная кислота, 1 н. раствор.—Пирофосфорная кислота, 1 н. раствор.—Метаванадат аммония, 0,5 н. раствор.—Роданид калия, 1 н. раствор.—Ниобат калия, 2%-ный раствор.—Перекись водорода, 3%-ный раствор— Ортофосфат натрия, 0,5 н. раствор.—Пирофосфат натрия, 0,5 и. раствор.— Метафосфат натрия, 0,5 и. раствор.—Раствор альбумина.—Растворы лакмуса и метилового оранжевого.—Поваренная соль.—Лед. [c.263]

    Определение области стеклообразования в сплавах халько-генидов фосфора, мышьяка, сурьмы, висмута и таллия при медленном и быстром охлаждении из жидкого состояния, а также в сложных халькогенидах на основе сульфида и селенида мышьяка проведено в работах [12, 26, 27]. В работе [26] было впервые указано на закономерное изменение способности к стеклообразованию в халькогенидных системах в, связи с изменением химической природы атомов. [c.17]

    Поиски новых путей исследования сольватационных эффектов привели А. И. Бродского к постановке последней серии работ в рассматриваемой области, посвященной изучению спектров комбинационного рассеяния некоторых жидких смесей и растворов электролитов. В этих работах, выполнявшихся при участии С. Ф. Безуглого, А. М. Зака и Л. В. Корчагина, исследованы смеси трихлоридов фосфора, мышьяка, сурьмы, висмута с некоторыми невзаимодействующими с ними химически полярными и неполярными жидкостями — спиртами, бензолом, четыреххлористым угле-ч. родом и др. Установлено, что отклонения раман-спектров от ад- / тивности, свидетельствующие о взаимодействии между компонен- ами смеси, возможны только при соблюдении двух условий нали-I чии значительного дипольного момента у одного из компонентов Ормеси и слабой связи между частями молекул второго компо- [c.17]

    Большой вред работе гидрогенизационных установок наносят так называемые каталитические яды. Как правило, элементы V группы (азот, фосфор, мышьяк, сурьма, висмут) и часть элементов VI группы (кислород, сера, селен, теллур) являются ядами для металлов VIII группы (железа, кобальта, никеля, платины, палладия). Яды блокируют активные центры катализатора, так как прочно адсорбируются на них или химически взаимодействуют с ними. При регенерации катализатора в результате окисления катализаторных ядов достигается их нейтрализация, однако лучшим способом борьбы с ядами является установление дополнительного (первого по ходу сырья) реактора, заполненного катализатором, для разложения или связывания отравляющих примесей. [c.262]

    Каммори [72] рассматривает методы определения в металлическом железе содержания меди, серебра, золота, кальция, бора, алюминия, углерода, мышьяка, висмута, хрома и кобальта. В работе Каммори [73] дан обзор методов определения в чистом железе содержания цинка, иттрия, кремния, олова, титана, циркония, ванадия, тантала, селена и вольфрама. В своей другой работе [74] автор приводит обзор методов определения в чистом железе содержания калия, магния, германия, свинца, гафния, фосфора, сурьмы, ниобия, кислорода, серы, молибдена, вольфрама, марганца и никеля. [c.27]

    Для работы требуотся П-образный стеклянный прибор, наполненный двуокисью азота. — Аппарат Киппа для получения водорода. — Штатив с пробирками — Трубка газоотводная с пробкой. — Щипцы тигельные. — Промывалка. — Фарфоровая чашка. — Цилиндр мерный емк. 25 мл. — Цилиндры со стеклами, 2 шт. — Колба емк. 100 мл. — Мерная колба емк. 250 мл. — Стакан емк. 400 мл, 2 шт. — Колбы конические емк. 100 мл, 3 шт. — Пипетка на 20—25 мл. — Кристаллизатор большой. — Палочка стеклянная. — Цинк гранулированный. — Медные стружки. — Фосфор красный. — Сульфат железа (П) перекристаллизо-ванный. — Уголь кусковой. — Азотная кислота дымящая. — Азотная кислота отн. веса 1,41.—Азотная кислота (1 1).—Серная кислота концентрированная. — Серная кислота, 2 н. и 30%-ный растворы. — Соляная кислота концентрированная и 2 н. раствор. — Нитрат висмута, 0,5 н. раствор. — Нитрат серебра, 0,1 и. раствор. — Едкий натр, 0,1 н. титрованный раствор и 2 н. раетвор. — Нитрит натрия, насыщенный раствор. — Сульфат железа, насыщенный раствор. — Хлорид сурьмы, 0,5 н. раствор. — Ортофосфорная кислота, 1 н. раствор. — Метафосфорная кислота, 1 н. раствор. — Пирофосфорная кислота, 1 н. раствор.—Метаванадат аммония, 0,5 н. раствор. — Роданид калия, 1 н. раствор. — Ниобат калия, 27о-ный раствор. — Перекись водорода, 3%-ный раствор. — Ортофосфат натрия, 0,5 н. раствор. — Пирофосфат натрия, 0,5 н. раствор. — Метафосфат натрия, 0,5 н. раствор. — Раствор альбумина. —Растворы лакмуса и метилового оранжевого. — Поваренная соль. — Лед. [c.263]


    Левина [314] опубликовала обзор работ по использованию масс-спектрометра для изучения термодинамики испарения и показала, что этот метод может быть применен для изучения состава паров в равновесных условиях и определения парциальных давлений компонентов, а также термодинамических констант. При повышенных температурах изучались галогенные производные цезия [9], были получены теплоты димеризации 5 хлоридов щелочных металлов [355] исследовались системы бор — сера [458], хлор- и фторпроизводных соединений i и z на графите [53], Н2О и НС1 с NazO и LizO [442], UF4 [10], системы селенидов свинца и теллуридов свинца [398], цианистый натрий [399], селенид висмута, теллурид висмута, теллурид сурьмы [400], окиси молибдена, вольфрама и урана [132], сульфид кальция и сера [105], сера [526], двуокись молибдена [76], цинк и кадмий [334], окись никеля [217], окись лития с парами воды [41], моносульфид урана [85, 86], неодим, празеодим, гадолиний, тербий, диспрозий, гольмий, эрбий и лютеций [511], хлорид бериллия [428], фториды щелочных металлов и гидроокиси из индивидуальных и сложных конденсированных фаз [441], борная кислота с парами воды (352), окись алюминия [152], хлорид двувалентного железа, фторид бериллия и эквимолекулярные смеси фторидов лития и бериллия и хлоридов лития и двува лентного железа [40], осмий и кислород 216], соединения индийфосфор, индий — сурьма, галлий — мышьяк, индий — фосфор — мышьяк, цинк — олово — мышьяк [221]. [c.666]

    Органическая химия мышьяка, сурьмы и висмута столь обширна, что в настоящей главе может быть представлена только краткая сводка, где особое внимание уделено новейшим достижениям. Эта область химии начала развиваться раньше, чем другие области химии металлоорганических соединений, поэтому большую часть сведений по этим соединениям можно найти в ранних работах [1—3]. Наиболее важным достижением последнего времени, которое обсуждается в конце этой главы, является получение пентафенильных соединений. Фосфорорганические соединения сюда не включены, так как фосфор определенно неметалл кроме того, недавно была издана книга по фосфорор-ганическим соединениям [4]. Сходство между фосфором и мышьяком, однако, столь велико, что иногда для сравнения вполне оправдано рассматривать соединения этих двух элементов совместно. [c.219]

    Вопрос о влиянии легирующих элементов в количестве 0,01, 0,1 и 1% на поглощение кислорода жидким оловом при 425° С изучали авторы работы [817]. Металлы с меньшим сродством к кислороду, чем у олова, — сурьма, свинец, висмут и медь — практически не влияют на окисление олова. Свинец в больших концентрациях несколько замедляет окисление олова, в какой-то степени повышая температуру начала существенного окисления [822]. Элементы с большим сродством к кислороду способны оказывать как вредное, так и полезное воздействие. Магний, литий и натрий значительно повышают скорость окисления олова, создавая порошкообразную серую окалину (натрий, ли-ти й) или даже скульптуру (магнии) [817]. Цпнк, фосфор, индий и алюминий — полезные добавки (особенно алюминий) [553, 817]. Сплав олова с 0,01% А1 окисляется при 425° С приблизительно в десять раз медленнее, чем чистое олово. [c.360]

    Оксигалогениды этой группы охватывают очень широкий диапазон структур от простых молекулярных соединений, таких, как нитрозил- или фосфорилгалогениды, до твердых оксигалогенидов висмута, имеющих слоистую структуру. Характерной особенностью химии галогенидов и оксигалогенидов азота, фосфора, мышьяка, сурьмы и висмута является то, что эти соединения легко взаимодействуют с нуклеофильными реагентами. Все они также легко гидролизуются, поэтому если результатам эксперимента придается большое значение, то работу необходимо проводить в абсолютно обезвоженной системе. Такие условия можно создать, в частности, в ва-куумированной системе. Надо обратить внимание на то, что все галогениды и оксигалогениды, как правило, реагируют с углеводородными смазками, и необходимо создавать специальные приспособления. [c.283]

    Установлено, что азотная и серная кислоты при концентрации до 25 /о (по объему), а также литий, натрий, калий, кальций, барий, стронций, медь, кадмий, свинец, хром, марганец, железо, серебро, титан, цирконий, фосфор, мышьяк, бор, алюминий, висмут, кобальт, никель, сурьма, торий и олово при концентрации по 1000 мкг/мл каждого определению не мешают. Несколько заниженные результаты получаются в присутствии магния и кремния (найдено соответственно 4,75 мкг/мл и 2,85 мкг/мл цинка вместо 5 мкг/мл). Значительный мешающий эффект был обнаружен первоначально со стороны галоидных кислот. Оптическая плотность при 2139 А 2,5 н. раствора соляной кислоты, содержащей цинк в концентрации 7,5 мкг/мл, равнялась 0,52 вместо 0,30 для водного раствора при той же концентрации цинка. С уменьшением концентрации кислоты оптическая плотность раствора приближалась к 0,30 (в растворе 0,1 н. соляной кислоты оптическая плотность равна 0,28). Объясняя полученный результат, авторы предположили наличие в области 2100—2200 А молекулярных абсорбционных полос соляной, бромистоводородной и йодистоводородной кислот, ранее не идентифицированных и в связи с этим рекомендовали определение цинка проводить в отсутствии галоидных кислот. С этим объяснением не согласился автор работы [8]. По его данным, галоидные кислоты при использовании горелки из нержавеющей стали определению цинка не мешают. В связи с этим он высказал предположение, что поглощение в области 2000—2200 А вызвано поступлением в пламя загрязнений. В последующих исследованиях это предположение подтвердилось [9] было показано, что при использовании латунной горелки ее поверхностный окисный слой разрушается соляной кислотой и вносится в пламя вместе с распылохм анализируемого раствора. Этим объясняется поглощение в пламени растворов галоидных кислот как при длине волны Zn 2139 А, так и при длинах волн 2024,. 2165, 2178 и 2182 А. При указанных длинах волн [81] расположены сильные абсорбционные линии меди. [c.149]

    Соединения индия, галлия, алюминия, бора с азотом, фосфором, мышьяком, сурьмой и висмутом являются интерметаллическими, но, как правило, со строгим атомным соотношением 1 1. Излишек одного из компонентов в расплаве выделяется при затвердевании в виде второй фазы. Эти соединения в совокупности обладают более широкой гаммой полупроводниковых свойств, чем вещества IV группы, и у них наблюдаются новые, прежде неизвестные свойства. Ширина запрещенной зоны этих веществ лежит в пределах от 0,17 (InSb) до 2,25 эв (GaP), что позволяет использовать некоторые из них в высокотемпературных приборах. Арсенид галлия —более перспективный материал для солнечных батарей, чем кремний. Будучи почти таким же тугоплавким, он имеет в полтора раза большую ширину запрещенной зоны и почти в три раза большую подвижность основных носителей тока. Он работает как полупроводник в интервале от минусовых температур до 500°. Это эффективный полупроводниковый источник света для ближней инфракрасной области, а фосфид галлия — для красной и зеленой области спектра. Многое обещают преобразователи солнечной энергии на основе фосфида индия. [c.187]

    Для работы требуется-. Прибор по рис. 75.—Штатив с пробирками.—Щипцы тигельные.—Воронки.—Чашка фарфоровая.—Крышки от фарфоровых тиглей 3 шт.—Асбест листовой.—Шпатель. —Бумага.—Бумага лакмусовая.—Бумага фильтровальная.—Окись хрома.—Алюминий в порошке.—Цинк в порошке.—Перманганат калия.—Фосфат натрия однозамещенный.—Фосфат натрия двузамещенный.—Трихлорид фосфора.— Пентахлорид фосфора,—Сера в порошке.— Уголь в порошке.—Нитрат калия в порошке.—Нитрат калия кристаллический.—Смесь кристаллических нитрата и карбоната калия (1 1).— Едкое кали, 30%-ный раствор.—Соляная кислота концентрированная и 2 н. раствор.—Серная кислота, 2 н. раствор.—Иодид калия. 0,5 н. раствор.—Нитрат калия, насыш, нный раствор.—Фосфат натрия, 1 н. раствор.—Ортофосфат натрия (однозамещенный), 1 н. раствор.—Ортофисфат натрия (двузамещенный), 1 н. раствор. -Сульфид аммония, 2 н. раствор,—Хлприд висмута, 0,5 и. раствор.—Нитрат висмута, 0,5 н. раствор.—Сульфат марганца, 0,5 н. раствор.— Хлорид сурьмы (НП. 0,5 н раствор.— Бихромат калия, I н. раствор.— Нит-ат калич, 1 н. раствор.—Бикарбонат натрия, насыщенный раствор.—Иод, %-ный раствор.—Арсенит натрия, 0,5 н. раствор.—Раствор лакмуса нейтральный.—Сероводородная вода.—Молибденовая жидкость. [c.244]

    Для работы требуется П-образный стеклянный прибор, наполненный двуокисью азота.—Штатив с пробирками.—-Трубка газоотводная с пробкой.— Щипцы тигельные.—Промывалка.—Фарфоровая чашка.—Цилиндр мерный емк. 25 мл.—Цилиндры со стеклами, 2 шт.—Колба емк. 100 мл,—Мерная колба емк. 250 мл.—Стакан емк. 400 мл, 2 шт.—Колбы конические емк. 100л г, 3 шт.— Пипетка на 20—25 мл.—Кристаллизатор большой.—Палочка стеклянная.— Цинк гранулированный.—Медный стружки.—Фосфор красный.—Сульфат железа (П) перекристаллизованный.—Уголь кусковой.—Азотная кислота ды-, мящая.—Азотная кислота отн. веса 1,41.—Азотная кислота (I 1).—Серная кислота концентрированная.—Серная кислота, 2 н. раствор.—-Соляная кис лота, 2 н. раствор.—Нитрат висмута, 0,5 н. раствор.—Нитрат серебра, 0,1 н. раствор.—Едкий нагр, 0,1 н. титрованный раствор и 2 н. раствор.—Нитрит натрия, насыщенный раствор.—Сульфат железа, насыщенный раствор.— Хлорид сурьмы, 0,5 н. раствор.—Ортофосфорная кислота, 1 и. раствор.—Метафосфорная кислота, 1 н. раствор.—Пирофосфорная кислота, 1 н. раствор.— Метаванадат аммония, 0,5 н. раствор.—Роданид калня, 1 н. раствор.—Перекись водорода, 3%-ный раствор.—Ортофосфат натрия, 0,5 н. раствор.—Пирофосфат натрия, 0,5 н. раствор.—.Метафосфат натрия, 0,5 н. раствор.—Раствор альбумина,—Раствор дифениламина,—Растворы лакмуса и метилоранжа.— Поваренная соль.—Лед. [c.244]

    Витрову и Разевейлеру удалось спектрографически доказать факт образования альдегидов при окислении топлива в процессе работы двигателя. Те же авторы [15], применяя тот же метод, показали эффект действия тетраэтилсвинца на реакции, предшествующие воспламенению в двигателе. Бриджмен и Марвин [16] установили, что эффект действия антидетонатора (тетраэтилсвинца) сводится в частности к повышению температуры воспламенения толива и определили это повышение для ряда индивидуальных углеводородов под действием 0,25% тетраэтилсвинца. Приведенный метод Эгертон положил в основу отбора элементов, соединения которых, как можно было рассчитывать, окажутся эффективными антидетонаторами. По мнению Эгертона лишь легко окисляющиеся металлы влияют на температуру самовоспламенения. При этом элементы, даюш,ие ряд окислов, обычно особенно эффективны. К числу наиболее эффективных элементов относятся таллий, калий, свинец, железо, никель, марганец, висмут, селен, теллур, натрий, калий, кальций, сурьма. Мало эффективны или недостаточно исследованы олово, церий, ванадий, титан, цирконий, торий, тантал, вольфрам, хром, кобальт. К неэффективным элементам принадлежат алюминий, магний, ртуть, иод, фосфор, золото, цинк. [c.343]


Смотреть страницы где упоминается термин РАБОТА 12. Фосфор, сурьма, висмут: [c.343]    [c.205]    [c.190]    [c.280]    [c.47]    [c.233]   
Смотреть главы в:

Практикум по неорганической химии -> РАБОТА 12. Фосфор, сурьма, висмут

Практикум по неорганической химии -> РАБОТА 12. Фосфор, сурьма, висмут




ПОИСК







© 2024 chem21.info Реклама на сайте