Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Спонтанное и вынужденное испускание, поглощение

    Спонтанное и вынужденное испускание, поглощение [c.9]

    Для фотохимии и спектроскопии наиболее важны следующие три типа электронных переходов 1) спонтанное испускание 2) вынужденное испускание 3) вынужденное поглощение. [c.121]

    Энергия может излучаться двумя различными путями — за счет спонтанного излучения и стимулированного (вынужденного) излучения. Вероятность того, что одиночная молекула в возбужденном состоянии начнет спонтанно излучать энергию, пропорциональна кубу разности энергий данного возбужденного и основного состояний ку. С другой стороны, вынужденное испускание вызывается излучением с резонансной частотой V. Если имеются две частицы X и , находящиеся на уровнях, энергии которых отличаются на кх, то вероятность поглощения фотона [c.346]


    С возбуждением X на более высокий уровень в точности равна вероятности того, что это будет стимулировать испускание другого фотона к в результате перехода Y на более низкий уровень (см. рис. 111). Если заселенности обоих уровней одинаковы, то энергия, поглощенная от падающего пучка излучения, в точности равна энергии, возвращенной пучку за счет вынужденного испускания излучения. Если заселенности не одинаковы, то отношение поглощенной энергии к энергии, испущенной за счет вынужденного излучения, равно отношению щ1п . Излучение от спонтанного испускания некогерентное, т. е. кванты испускаются во всех направлениях и с произвольным распределением фаз во времени и пространстве. С другой стороны, вынужденное излучение находится в точности в фазе с стимулирующим излучением, так что если падающий пучок хорошо сфокусирован, то испускаемое излучение будет в значительной мере когерентным. [c.346]

    По отношению к поглощению обратным процессом является не спонтанное испускание, а процесс вынужденного испускания, выражающийся в усилении пучка света, проходящего через среду. Это явление, до недавнего времени рассматривавшееся как некий теоретический курьез, было реализовано в течение последних лет в системах оптических квантовых усилителей и генераторов (лазеров). [c.14]

    В основе работы лазеров лежат три важнейших явления, происходящих при взаимодействии электромагнитной волны с веществом спонтанное испускание, вынужденное испускание и поглощение. [c.9]

    Чтобы установить связь между коэффициентами спонтанного и вынужденного испускания, можно, не прибегая к квантованию поля, использовать только изящное доказательство, принадлежащее Эйнштейну. Рассмотрим двухуровневую систему, находящуюся в полости абсолютно черного тела с температурой стенок Т. Вследствие излучения абсолютно черного тела наряду со спонтанным испусканием здесь будут также наблюдаться поглощение и вынужденное испускание. Если обозна- [c.20]

    Мы видели, что система в состоянии т может быть переведена в другое состояние п под действием излучения с частотой v = Е. — Е /к, где и — энергии двух состояний. Какая из этих энергий больше, несущественно если энергия начального состояния меньше, чем конечного, мы говорим о поглощении , если же начальное состояние имеет большую энергию, мы говорим о вынужденном испускании . Кроме того, мы должны признать возможность спонтанного испускания . [c.492]

    Однако для переходов между двумя ориентациями ядерного спина кх кТ и отличие в равновесной заселенности двух уровней очень мало. Результирующая вероятность вынужденного излучения с верхнего уровня оказывается поэтому примерно такой же, как для поглощения с нижнего уровня. Вследствие очень малой разности энергий вероятность спонтанного испускания в этом случае пренебрежимо мала. Если бы обе заселенности были в точности одинаковы, вообще не происходило бы поглощения энергии от пучка радиочастотного излучения на каждые п абсорбированных квантов имелось бы п квантов, испускание которых было бы вызвано падающим пучком и которые находились бы полностью в одной фазе с ним. В действительности в поле в 10 ООО гс имеется избыток примерно в четыре протона на миллион в нижнем состоянии, так что должно происходить небольшое результирующее поглощение энергии, которое может быть детектировано и усилено с помощью обычных приемов электроники. Разность в заселенностях и, следовательно, результирующее поглощение можно усилить путем повышения и понижения Т. Экспериментальные трудности препятствуют значительному увеличению Н , но измерения можно проводить при низких температурах, [c.347]


    Переходы между различными электронными состояниями могут сопровождаться спонтанным, т. е. самопроизвольным или вынужденным (при воздействии излучения), испусканием и всегда вынужденным поглощением электромагнитного излучения. Наиболее важными являются электрические дипольные переходы, сопровождающиеся изменением электрического дипольного момента. Интенсивность в спектрах испускания и поглощения связана с вероятностью соответствующих переходов. Число фотонов Z, испущенных или поглощенных за единицу времени, пропорционально числу молекул N на уровне, с которого совершается переход. При спонтанном испускании (переход с п-го на т-й уровень) [c.313]

    Излучение и поглощение света связано с процессами перехода атомов из одного энергетического состояния в другое (стр. 142). При переходе атомов из более низкого в более высокое энергетическое состояние поглощение света всегда происходит вынужденно в результате воздействия внещнего излучения с частотой V = = ( ] — Ео)1к. При излучении света переходы атомов происходят либо самопроизвольно (спонтанно), либо вынужденно в результате воздействия внещнего излучения той же частоты, что и частота испускания V. [c.201]

    Схема (1.3) иллюстрирует, таким образом, явление селективного поглощения света свободными атомами, на использовании которого и основан атомно-абсорбционный анализ. При поглощении фотона свободный атом, как показано на схеме, переходит в возбужденное состояние (фотовозбуждение). Так как возбужденное состояние неустойчиво, атом за короткое время (порядка 10 с) покидает его. Переход в невозбужденное состояние может произойти различными способами при ударе второго рола, за счет спонтанной эмиссии (т. е. самопроизвольного испускания фотона) или же вынужденной эмиссии (т. е. испускания фотона при воздействии света). [c.20]

    Используя соотношение Эйнштейна между коэффициентами спонтанного испускания и вынужденного поглощения, можно оценить радиационное время жизни по интенсивности длинноволновой полосы поглощения (обус- [c.21]

    Более полное квантово-механическое рассмотрение процесса взаимодействия излучения с веществом в области поглощения приводит к качественному согласованию экспериментальных и теоретических кривых ДОВ. При этом учитываются процессы поглощения, вынужденного испускания и спонтанного излучения. В результате в уравнении (VIII.22) для вращательной поляризуемости в знаменателе появляется комплексное число 1уш, где ум — положительная постоянная (2 .= 1/т=Л г, т — время жизни возбужденного состояния, Aki — коэффициенты Эйн(лтейна спонтанного испускания ). Предполагается, что [c.187]

    Обычно различают три типа процессов поглощение, вынужденное излучение и спонтанное излучение. Предположим, что химическая частица имеет два квантовых состояния I и т с энергиями е и вт- Если частица первоначально находится в нижнем состоянии I, то она может взаимодействовать с электромагнитным излучением и поглощать энергию, переходя в состояние т. В обычных процессах поглощение происходит одноступенчато, так что разность между исходным и конечным уровнями точно равна энергии одного фотона излучения следовательно, поглощение излучения происходит лишь при условии 8т—Е1 = Н условие Бора ), Процесс поглощения состоит в потере интенсивности электромагнитного излучения и получении энергии поглощающей частицей. Обратный процесс, когда частица, находящаяся в верхнем состоянии, отдает энергию электромагнитному излучению, известен как вынужденное излучение слово вынужденное указывает, что существует взаимодействие между излучением и возбужденными частицами, вызывающее потерю энергии. Хотя мы не рассматриваем природу взаимодействия частицы и излучения, ясно, что скорость (интенсивность) поглощения или вынужденного излучения пропорциональна скорости столкновений фотонов с поглощающими или излучающими частицами, т. е. изменение интенсивности пропорционально плотности излучения р и концентрации химических частиц. Коэффициент пропорциональности определяет так называемые коэффициенты Эйнштейна В , й/т — коэффициент для процесса поглощения, Вт1 — для вынужденного излучения согласно принципу микроскопической обратимости, Вш = Вт1, и этот же результат можно получить при строгом следовании теории излучения. Скорости поглощения и вынужденного испускания равны В/тПгр и Вт1Птр = = В1тПтр) соответственно, где щ и Пт — концентрации частиц в низко- и высоколежащих состояниях. В случае теплового равновесия Пт всегда меньше, чем П1 [см. уравнение Больцмана (1.4)], и вклад поглощения оказывается более существенным, чем вынужденного испускания. Различие вкладов поглощения и вынужденного испускания определяется соотношением между величиной (вт—е ) и температурой Т. Уже упоминалось, что характерными для фотохимии являются уровни энергии ът--е.1) >кТ и Пт<.П1, поэтому вклад вынужденного испускания в фотохимические процессы в условиях теплового равновесия пренебрежимо мал. Однако в неравновесных ситуациях вынужденным испусканием уже нельзя пренебрегать, и если инверсия заселенности (/гт> () возрастает, то процессы испускания начинают преобладать над поглощением, и в [c.29]


    Кроме поглощения и вынужденного испускания в теории излучения рассматривается третий процесс — спонтанное излучение. В этом случае возбужденная частица теряет энергию, достигая более низкого уровня, в отсутствие излучения. Спонтанное излучение — случайный процесс, и скорость дезактивации возбужденных частиц за счет спонтанного излучения (при статистически большом числе возбужденных частиц) является величиной первого порядка. Таким образом, константа скорости первого порядка может быть использована для описания интенсивности спонтанного излучения эта константа является коэффициентом Эйнштейна Л (Ami), который для спонтанного процесса играет ту же роль, что и константа второго тюрядка В для индуцированных процессов. Скорость спонтанного излучения равна Aminm, и интенсивность спонтанного излучения может быть использована для расчета Пт, если Ami известен. Большинство явлений, связанных с испусканием, которые изучаются в фотохимии, — флуоресценция, фосфоресценция и хемилюминесценция — обычно являются спонтанными, и в дальнейшем мы будем опускать это прилагательное. Если же испускание вынужденное, этот факт будет отмечаться особо. [c.30]

    Излучат. К. п. могут быть спонтанными и вынужденными. Спонтанное излучение (нсп>скание) происходит независимо от внеш. воздействия на мол. систему. Вероятность спонтанного излучения, сопровождающегося испусканием квантов электрочагн, энергии и переходом мол. системы с п-го энергетич. уровня на /п-й, характеризуется коэф. Эйнштейна средним числом квантов, испускаемых системой за I с и отнесенных к числу молекул в системе. Вероятность поглощения и вынужденного испускания зависит от плотности электромагн. излучения и характеризуется коэф. Эйнштейна и В , равными соотв. числу квантов злеггромагн. поля, к-рое поглощается или вынужденно испускается системой в среднем в расчете на I молекулу за I с при единичной плотности излучения. Связь между коэф. В , В была получена А. Эйнштейном на основе термодинамич. рассмотрения и впоследствии строго обоснована в квантовой электродинамике. Она выражается соотношениями  [c.368]

    По мере дальнейшего продвижения в коротковолновую область спектра становятся все более жесткими требования, предъявляемые как к активным молекулам, тт и к источникам накачки. Помимо высокого квантового выхода флуоресценции и достаточно интенсивного поглощения на длинах волн излучения накачки, молекула должна иметь сечение вынужденного испускания на разрешенном флуоресцентном переходе выше 0,5-10 см [106], а источник накачки из-за быстрого [пропорционально кубу частоты, см. формулу (1)] возрастания при таком продвижении вероятности спонтанного излучения должен обеспечивать все большую скорость накачки. Поэтому попытки [100, 106, 125] получить генерацию в диапазоне 340—300 нм е привели к успеху. Лишь недавно при накачке растворов фенилбензоксазола мощными лазерными импульсами очень короткой длительности (2,5 тс или 25 пс) удалось возбудить генерацию на двух длинах волн, 330 и 345 нм (одновременно) [126], что, однако, не меняет сложившейся ситуации. Следует заметить, что вблизи 300 нм флуоресцируют уже довольно сложные органические соединения. Простые соединения, например насыщенные углеводороды, флуоресцирующие с низким квантовым выходом в более коротковоотновой области спектра, непригодны для генерации излучения при оптической накачке [100, 106]. [c.191]

    Излучательное время жизни, вычисляемое по формулам (27)—(29), относится к спонтанному испусканию света и является обратной величиной вероятности (=1/тг) того, что молекула совершит нзлучательный переход из верхнего состояния п в нин<-нее состояние т в отсутствие излучения частоты V, соответствую-ш,ей разности энергий состояний п и т. В общем случае полная вероятность перехода равна сумме вероятности и величины и Впт, где V — плотность излучения частоты V, а величина В т постоянна для рассматриваемой системы. Свет, испускаемый во втором процессе, называют вынужденным (стимулированным) излучением, и его фаза совпадает с фазой внешнего вынуждающего света. Вероятность вынужденного испускания и Впуп совпадает с вероятностью и Втп обратного процесса, т. е. поглощения (согласно формуле Эйнштейна, Втп = пт = зЛ , /8л ftv ). Следовательно, если в любой системе заселенность основного состояния больше заселенности возбужденного, то суммарным результатом облучения светом частоты V будет поглощение света. Если каким-либо способом в возбужденном состоянии удастся получить большую заселенность, чем в основном, то облучение светом частоты V приведет к дополнительному, стимулированному этим светом испусканию излучения. На этом принципе основана работа лазера, подробное рассмотрение которого, однако, выходит за рамки данной книги. Вынужденное испускание легче всего получить в системах с узкой полосой люминесценции, и для его возбуждения требуются очень высокие интенсивности возбуждающего света. Ниже мы будем рассматривать такие системы, в которых вынужденным испусканием по разным причинам можно пренебречь и, следовательно, в которых соблюдается экспоненциальный закон спадания интенсивности флуоресценции, а времена жизни возбужденных состояний можно рассчитывать по уравнениям (27) —(29). [c.35]

    Квантовая теория рассматривает переходы между двумя уровнями с поглощением или испусканием кванта электромагнитного излучения. Мерой интенсивности служит вероятность перехода системы из одного состояния в другое. Рассматриваются три типа переходов между уровнями i и k (см. рис. 1.2) переходы спонтанные с испусканием кванта света и переходы вынужденные с испу-С1 анием или—поглощением—кванта —Па—каждом уровне имеется определенное число молекул П . Число молекул, переходящих из одного состояния в другое, пропорционально числу молекул на исходном уровне, величине промежутка времени dt и плотности излучения p(v), если переходы вынужденные. Коэффициенты пропорциональности Aik, Bih и Bhi называются коэффициентами Эйнштейна для спонтанного перехода с испусканием, вынужденного перехода с испусканием и вынужденного перехода с поглощением соответственно. Знак минус означает, что заселенность исходного уровня при переходе уменьшается  [c.20]

    Из теории электромагнитного излучения следует, что вероят- ность перехода с нижнего энергетического уровня на верхний с поглощением энергии равна вероятности перехода в обратном направлении, сопровождающегося вынужденным излучением [43]. В случае изолированного ядра вероятность перехода с верхнего энергетического уровня на нижний путем спонтанного излучения очень невелика [44]. Если бы на каждом энергетическом уровне находилось одинаковое количество ядер, то число переходов с нижнего уровня на верхний и в обратном направлении было бы одинаковым, т. е. суммарный эффект не сопровождался бы поглощением или испусканием энергии. Однако в действи- [c.258]

    Переходы молекулы из одного состояния в другое, происходящие с ис1гусканием или поглощением кванта электромагнитного излучения, называются радиационными. В общем случае радиационные переходы могут быть как спонтанными, так и вынужденными. Первые из них происходят самопроизвольно, т. е. без внешнего воздействия, а вторые — под действием внешнего электромагнитного поля. Переход молекулы в состояние с более высокой энергией осуществляется в результате поглощения кванта электромагнитного излучения, т. е. всегда является вынужденным. Таким образом, спектры поглощения молекул, в отличие от их спектров испускания, всегда представляют собой совокупность вынужденных радиационных переходов. [c.221]

    Испускание возбужденных частиц может быть спонтанным (самопроизвольным), т.е. происходящим в отсутствие внепшего излучения, и вынужденным, просходящим под действием внешнего излучения. Поглощение всегда является вынужденным хфоцессом. [c.200]

    Этим люминесценция отличается от вынужденного (индуцированного) излучения, получаемого в оптических квантовых генераторах (лазерах). Вынужденное излучение (ему также отвечает переход 3 на рис. 1) происходит под действием света, частота которого отвечает расстоянию между основным и воз-бужденнььм уровнями. Обычно такой свет вызывает преимущественно переход электронов в возбужденное состояние, т. е. поглощается. Но при создании так называемой инверсной заселенности , когда специальными мерами ( накачкой ) на возбужденный уровень переводится большая часть электронов (для этого время жизни их на таком уровне должно быть достаточно велико), вероятность обратного перехода под действием фотонов оказывается больше вероятности поглощения, и происходит одновременное испускание света всеми излучателями. Вследствие этого индуцированное излучение когерентно. Напротив, люминесценция является спонтанным некогерентным излучением. [c.6]


Смотреть страницы где упоминается термин Спонтанное и вынужденное испускание, поглощение: [c.121]    [c.435]    [c.32]    [c.313]    [c.346]    [c.200]    [c.614]    [c.21]    [c.26]   
Смотреть главы в:

Аналитическая лазерная спектроскопия -> Спонтанное и вынужденное испускание, поглощение




ПОИСК







© 2025 chem21.info Реклама на сайте