Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Диффузия, сопровождающаяся гетерогенной химической реакцией

    Если реагенты перед вступлением в реакцию хорошо перемешать, то скорость гомогенных процессов определяется скоростью непосредственно химического превращения веществ. В гетерогенных процессах химические реакции обычно сопровождаются чисто физическими промежуточными стадиями, которые определяют или влияют на наблюдаемую скорость процесса. В простейшем случае при протекании гетерогенного химико-технологического процесса можно выделить два элементарных процесса — диффузию веществ, находящихся в одной фазе, к поверхности раздела фаз или от нее и химическую реакцию внутри одной из фаз. В зависимости от того, какой из элементарных процессов — диффузия или реакция — определяет скорость ХТП, последние разделяют по области протекания. Например, если определяющее значение на скорость ХТП оказывает скорость диффузии, то говорят о химико-технологических процессах, протекающих в диффузионной области если скорость ХТП определяется скоростью химической реакции, то процесс протекает в кинетической области. Методы и приемы интенсификации ХТП, протекающих в диффузионной и кинетической областях, совершенно различны. Знание области протекания процесса особенно важно для анализа гетерогенно-каталитических процессов и управления ими. [c.33]


    Переработка природных фосфатов в простой и двойной суперфосфат. Простой суперфосфат получают разложением апатитов серной кислотой. Этот гетерогенный процесс, лимитируемый, в основном, диффузионной кинетикой, можно условно разбить на два этапа. Первый — это диффузия серной кислоты к частицам апатита, которая сопровождается быстрой химической реакцией, идущей на межфазной поверхности (поверхности частиц апатита) вплоть до полного израсходования кислоты, и кристаллизация сульфата кальция. [c.18]

    Химические процессы в производстве катализаторов весьма разнообразны. Они могут проходить гомогенно в жидкой или газовой фазе и в гетерогенных системах. Широко применяют гетерогенные процессы, в которых химические реакции сопровождаются диффузией и переходом компонентов нз одной фазы в другую. В системе газ — жидкость часто используют процессы хемосорбции газовых компонентов и обратные процессы десорбции с разложением молекул жидкой фазы. В системе газ — твердое вещество также применяют хемосорбцию и десорбцию в системах жидкость — твердое вещество и жидкость — жидкость — избирательную экстракцию с образованием новых веществ в экстрагенте. Сложные многофазные процессы с образованием новых веществ происходят при термообработке катализаторов. При этом, как правило, в общем твердофазном процессе принимают участие появляющаяся при нагревании эвтектическая жидкая фаза или компоненты газовой фазы. [c.96]

    Часто в гетерогенных реакциях диффузия через поверхность раздела фаз сопровождается химической реакцией. Например, закись железа диффундирует из шлака (фаза /) в жидкую сталь (фаза II), где кислород реагирует с углеродом или другими примесями. В шлаке и на границе раздела ее концентрация С=Со. [c.265]

    Рассмотрим кинетику гетерогенного процесса, в котором диффузионный перенос вещества через поверхность раздела фаз сопровождается химической реакцией. При этом будем пользоваться методом, предложенным Д. А. Франк-Каменецким. Пусть диффузия происходит из фазы I в фазу II, в которой протекает химическая реакция и концентрация вещества в объеме фазы I и на границе фаз [c.496]

    Слой катализатора в работающем реакторе представляет собой сложную гетерогенную систему, в которой частицы катализатора взаимодействуют с обтекающим их потоком газа. Химические процессы протекают на поверхности катализатора, к которой и от которой осуществляется транспорт реагирующих веществ и продуктов реакции путем внешней и внутренней диффузии. Поскольку все химические превращения (а также адсорбция и десорбция) -сопровождаются тепловыми эффектами, необходим соответствующий теплообмен для поддержания оптимальной температуры. [c.146]


    Если гетерогенная реакция сопровождается изменением объема, то она приводит к общему течению реагирующей смеси в направлении, нормальном к поверхности, на которой происходит реакция. Возникающий от этого конвективный поток складывается согласно закону (I, 11а) с диффузионным потоком и изменяет скорость диффузии. Его значение было впервые подчеркнуто Стефаном [1], почему мы и называем его стефановским потоком. Особенно существенным оказывается стефановский поток для процессов испарения и конденсации паров, в теории которых он имеет первостепенное значение. Для химических реакций влияние стефановского потока оказывается обычно второстепенной поправкой. [c.142]

    Более сложен механизм гетерогенного катализа. Однако бесспорно, что в этом случае существенную роль играет поглощение поверхностью катализатора реагирующих частиц. Процесс также протекает в несколько стадий, но здесь их больше и они иные за счет диффузии частицы исходных реагентов подводятся к катализатору и его поверхность поглощает их активированная адсорбция). Это сопровождается сближением молекул н повышением — под влиянием силового поля поверхностных атомов катализатора,— их химической активности изменяется структура электронных оболочек молекул и, как следствие, понижается активационный барьер. В результате на катализаторе происходит реакция. Затем продукты взаимодействия покидают катализатор и, наконец, за счет диффузии переходят в объем. Таким образом, промежуточными в гетерогенном катализе являются поверхностные соединения. [c.124]

    Скорость реакции роста цепи, по-видимому, не определяется диффузией вплоть до значительно более высоких степеней превращения, в случае винилацетата, вероятно, до 50—60%. В ионных системах диффузионное торможение должно проявляться главным образом в реакциях роста и передачи цепи. Точных данных, касающихся этого вопроса, нет. Конечно, в случае анионной полимеризации под действием гетерогенных катализаторов необходимо очень тщательно рассматривать, определяется ли измеряемая скорость диффузией или химическими факторами. Системы, в которых прогрессирующее уменьшение скорости полимеризации сопровождается накоплением гелеобразного полимера вокруг катализатора [67], представляют собой, по крайней мере на первый взгляд, случай диффузионного контроля [c.116]

    Иерейдем к вопросу о влиянии внутреннего реагирования. Всякая гетерогенная химическая реакция идет не только на внешней поверхности раздела фаз, но и внутри материала. Горение или газификация угля также сопровождаются проникновением реагирующих газов через его поры посредством диффузии. [c.113]

    Рутил, титановые шлаки, лопарит хлорируют в виде брикетов с нефтяным коксом на скорость хлорирования оказывают влияние состав и помол шихты, размеры брикета, пористость и т. д. Основные стадии этого сложного гетерогенного процесса а) подвод хлора к поверхности брикета б) диффузия хлора внутрь брикета в) химическая реакция. Первый процесс обусловлен молекулярной диффузией и переносом хлора к поверхности брикета вследствие движения газов. Диффузия хлора через поры внутрь брикета сопровождается химической реакцией, в результате которой образуется зона хлорирования, имеющая некоторую протяженность. С течением времени зона хлорирования перемещается к центру брикета, вместо нее образуется зона непрохлори-рованного огарка . Глубина зоны хлорирования зависит от температуры. При 400—450° ее глубина превышает радиус брикета, поэтому концентрация хлора во всех точках брикета практически одинакова, и реакция протекает во всем объеме брикета (кинетическая область). С повышением температуры константа скорости реакции возрастает быстрее коэффициента дис х()узии, процесс переходит в диффузионную область, глубина зоны хлорирования уменьшается. Переходу в диффузионный режим соответствует линейная скорость" хлорирования Кр= (1 -7- 4)-10 см/с. Глубина хлорирования брикета удовлетворительно описывается уравнением [c.261]

    В предыдущих работах в этом направлении [139 и др.] авторы ограничивались рассмотрением выгорания одной частицы, что совершенно недостаточно при переходе к процессу горения потока угольной пыли. Кроме того, эти авторы исходили из неправильного предположения о том, что горение мелких пылинок аналогично горению угольного шарика крупных размеров, когда гетерогенная реакция протекает в основном на его внешней поверхности. Б работах по горению пыли [302, 493], а также более поздней работе Орнинга [343] принималось, что скорость горения определяется одной диффузией, и на поверхности частицы концентрация кислорода равна нулю. Эти исследования не ушли вперед по сравнению с работой Нуссельта [302] (сделавшего первый шаг в том же направлении), несмотря на то, что к этому времени были известны исследования Хоттеля и сотрудников [190] и Блинова [191] в которых впервые произведен учет скорости химической реакции в процессе горения угольной частицы. В работе [139] учитывается скорость химической реакции, но время горения определяется при неизменной концентрации кислорода в окружающей среде (т. е. при неограниченном количестве кислорода). Кроме того, пренебрегается реагированием внутри объема частицы. Горение и газификация всегда сопровождаются проникновением газа внутрь пор частицы. Поэтому реакция протекает не только на внешней поверхности, но и внутри объема. При достаточно малом размере частицы весь ее объем участвует в реакции. [c.474]


    Унрош,ения в описании хроматографического процесса, рассмотренные в предыдуш,ем параграфе, связаны с различными моделями его гидро(аэро)динамики. Многие конкретные разновидности хроматографии допускают также унрош,епия и в описании кинетики процесса. При этом обмен молекулами анализируемого веш,ества между фазами хроматографической системы -удобно рассматривать как гетерогенный процесс, понимая под гетерогенными превраш,ения, происходящие на границах раздела фаз. Гетерогенные процессы состоят из нескольких стадий. Первой из них является стадия переноса частиц, участвующих в процессе, к месту гетерогенного превращения. В хроматографии — это перенос молекул исследуемого вещества к границе раздела фаз в результате молекулярной диффузии и совокупности ряда гидро-(аэро)динамических факторов. На второй стадии процесса происходит собственно гетерогенная реакция. В хроматографии — это сорбция-десорбция элюируемых молекул. Третья стадия заключается в отводе прореагировавших частиц от места реакции. В хроматографии — это отвод сорбированных или десорбированных молекул от границы раздела фаз. Суммарная скорость гетерогенного процесса контролируется скоростью наиболее медленной стадии. В том случае, когда медленной стадией является подача или отвод реагентов, говорят, что реакция характеризуется диффузионной кинетикой. Если наиболее медленной является стадия химического или физического превращения, то она и определяет скорость реакции. А когда скорость переноса реагентов и происходящих с ними превращений сравнимы между собой, говорят о гетерогенных реакциях смешанного типа. Большинство хроматографических процессов, в которых суть гетерогенного превращения состоит в переходе элюируемых молекул из подвижной фазы в неподвиншую и обратно, характеризуются диффузионной кинетикой. В адсорбционной хроматографии этот переход сопровождается энергетическим взаимодействием с поверхностью сорбента. [c.18]

    Электродные реакции гетерогенны и сопровождаются переходами заряженных частиц через границу раздела фаз. Они состоят из отдельных элементарных последовательных, а иногда и параллельных электрохимических и химических стадий, включающих помимо переноса зарядов диффузию исходных веществ и продуктов реакции, их возможную адсорбцию иа поверхности электрода, адсорбцию промежуточных частиц, образование новой фазы и т. д. Под механизмом реакции понимают установление определенной последовательности элементарных стадий, которые составляют суммарную электродную реакцию, т. е. реакцию, в которой четко могут быть определены как исходные вещества, так и конечные продукты реакции.. В большинстве случаев ис.ходные вещества, вступающие в реакцию, известны, и тем не менее доказательство участия какого-либо сорта частиц в реакции представляет известную трудность, так как в растворе нли расплаве исходное вещество может находиться в виде частиц различного состава. Част -цы, непосредственно реагирующие на электроде, могут быть в растворе в ничтолсной концентрации, но непрерывно восполняться в результате быстрой химической реакцни. Аналогично и продукты реакции могут вступать в последующее химическое взаимодействие с компонентами раствора или расплава. Наличие элементарной стадии переноса заряда через двойной электрический слой существенно отличает электрохимические реакции от гетерогенных хнм 1ческнх реакц Й, [c.245]


Смотреть страницы где упоминается термин Диффузия, сопровождающаяся гетерогенной химической реакцией: [c.267]   
Смотреть главы в:

Явления переноса -> Диффузия, сопровождающаяся гетерогенной химической реакцией




ПОИСК





Смотрите так же термины и статьи:

Гетерогенная химическая реакция

Реакции гетерогенные

Химический ая гетерогенное



© 2024 chem21.info Реклама на сайте