Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Галогены применение

    Получение и применение галогенов. В природных соединениях галогены содержатся (за редким исключением) в виде отрицательно заряженных ионов, поэтому почти все спосо()ы получения свободных галогенов сводятся к окислению их ионов. Это осуществляется или при помощи окислителей, или действием электрического тока. [c.357]

    Адсорбционные методы очистки применяют для удаления истинно растворимых органических соединений из сточных вод. Широкое применение нашел адсорбционный метод очистки с использованием обычных активных углей и некоторых других сорбентов, в частности активных углей, получаемых из отходов производства феноло-формальдегидной смолы, торфа, а также синтетических высокопористых полимерных адсорбентов. Активные угли высокопористые адсорбенты с удельной поверхностью от 800 до 1500 м2/г. Адсорбционное поглощение растворимых органических загрязнений активным углем происходит в результате дисперсионных взаимодействий между молекулами органических веществ и адсорбентом. Активный уголь гидрофобный адсорбент, т. е. обладает сродством к гидрофобным молекулам органических веществ. Чем выше энергия гидратации адсорбата, тем хуже он извлекается из воды адсорбентом. Сказанное, в частности, подтверждается тем, что активные угли хорошо сорбируют такие гидрофобные соединения, как алифатические и ароматические углеводороды, их галоген- и нитрозамещенные соединения и другие и значительно хуже гидрофильные соединения, например низшие спирты, гликоли, глицерин, ацетон, низшие карбоновые кислоты и некоторые другие вещества. [c.95]


    Получение и применение галогенов. В природных соединениях галогены содержатся (за редким исключением) в виде отрицательно заряженных ионов, поэтому почти все способы получения свободных галогенов сводятся к [c.481]

    Применение галогенов и их соединений [c.281]

    Получение и применение галогенов 357 [c.357]

    При высокой температуре титан соединяется с галогенами, кислородом, серой, азотом и другими элементами. На этом основано применение сплавов титана с железом (ферротитана) в качестве добавки к стали. Титан соединяется с находящимися в расплавленной стали азотом и кислородом и этим предотвращает выделение последних при затвердевании стали, — литье получается однородным и не содержит пустот. [c.650]

    Рассказывать по крайней мере об одном важном применении каждого из элементов группы галогенов, [c.331]

    Благодаря высокой реакционной способности многие металлорганические соединения (особенно соединения металлов первой и второй групп периодической системы) нашли широкое применение в органическом синтезе. Так, на способности металлорганических соединений взаимодействовать с серой, кислородом, галогенами, селеном, теллуром основано их применение для получения спиртов, тиоспиртов и других производных углеводородов. Особенно широкое применение в синтезе углеводородов и их производных (спирты, альдегиды, кетоны, кислоты) находит реакция присоединения металлорганических соединений по кратным связям С=С, С=0, =N, N, =S, N=0 и S=0. [c.207]

    По приведенной схеме реагируют разбавленные азотом хлор и бром. Реакции фторирования и иодирования не находят практического применения. Механизм присоединения галогенов к кратным связям был рассмотрен в разд. 1,.1. [c.56]

    В настоящее время в промышленных масштабах производят более сотни низкомолекулярных полимеров различного состава (простые полиэфиры, сложные полиэфиры, полиамиды, полисульфиды, полидиены, сополимеры диенов с олефинами и т. д.), которые могут содержать различные функциональные группы (карбоксильные, гидроксильные, сульфгидрильные, аминные, эпоксидные, изоцианатные, галогенные). Применение простых и сложных полиэфиров в технологии литьевых уретановых эластомеров хорошо [c.9]

    Замещение атомов водорода в кольце облегчается применением высоких концентраций галогенов и специфическим каталитическим действием переносчиков. [c.776]

    Применение катализаторов в процессе каталитического сжигания лимитируется не только температурой, но и присутствием в отходящих газах каталитических ядов (тяжелых металлов, фосфатов, соединений мышьяка, серы и галогенов) как в элементарном виде, так и в форме различных соединений. [c.144]


    Вначале считали, что причиной дезактивации является отравление главным образом соединениями серы, но более тщательная проверка работы катализаторов обнаружила два других фактора, которые играют важную роль в дезактивации термическое спекание и дезактивация галогенами. Если отравление соединениями серы может полностью устраняться применением соответствующих [c.135]

    Конструктивное оформление аппаратов комплексной очистки и обезвреживания газовых выбросов зависит от их физико-химического состояния. Другим определяющим параметром конструктивного исполнения аппаратов является источник излучения инфракрасного света. В настоящем пособии рассмотрено только два типа таких источников это галогенные лампы и углерод-углерод-ные материалы. Дальнейшее развитие науки и современных технологий может дать новые источники излучения инфракрасного света, которые могут упростить конструкции аппаратов, увеличить срок их непрерывной работы и расширить диапазон применения. [c.320]

    Назовите основные области применения галогенов. [c.109]

    Для получения галогенов окисляют галогеноводороды НХ сильными окислителями. Часто для этого сначала в, реакционном сосуде выделяют галогеноводород в свободном состоянии из его солей. Из-за большой реакционной способности галогенов при их получении следует по возможности избегать применения резиновых шлангов. [c.584]

    Домашняя подготовка. Природные соединения галогенов. Способы получения галогенов в лаборатории и промышленности. Физические свойства. Строение атомов галогенов. Характеристика их окислительно-восстановительных свойств. Сродство к электрону и ионизационный потенциал. Валентность галогенов. Гидролиз хлора, брома и иода в водных растворах. Способы получения гало-геноводородов. Растворимость их в воде. Кислородные соединения галогенов. Хлорная известь, ее свойства и применение. Хлорноватая кислота и ее соли. Сравнительная характеристика кислородных соединений галогенов. Применение галогенов и их соединений. [c.180]

    Применение важнейших соединений галогенов [c.66]

    Такое же благоприятное влияние оказывают галогены. Они обра-З уют свободные радикалы, как это уже известно, из реакции хлорирования. Образующийся галоидоводород опять окисляется в свободный галоген, и последний действует снова радикалообразующе. По этой причине для ускорения реакции нитрования галогена требуется значительно меньше, чем кислорода. Кроме того, галогены оказывают благоприятное действие вследствие того, что они соединяются с окисью азота в хлористый нитрозил и тем самым не происходит обрыва цепи. Кислород в условиях газофазного нитрования не может так быстро окислять N0 в ЫОг- Азотная кислота, как и N02, может употребляться как нитрующий агент. Действие азотной кислоты основывается лишь на том, что она поставляет N02 это происходит путем термического разложения ННОз0H + N02. Распад с образованием радикалов также объясняет, почему с азотной кислотой получаются лучшие результаты, чем с N02 [89]. При разложении азотной кислоты образуются чрезвычайно активные гидроксильные радикалы, которые при взаимодействии с углеводородом сразу же образуют алкильные радикалы НН + ОН-> К + Н20. Поэтому, как нашел Бахман с сотрудниками, добавка кислорода прн нитровании с двуокисью азота имеет относительно больший эффект, чем при применении самой азотной кислоты. Но и N02, как таковая, способствует образованию радикалов и одновременно нитрует. [c.285]

    Частицы с неспаренным электроном в ряде случаев удобно получать в результате фотолиза. Так, например, широкое применение находит фотохимическое генерирование атомов галогенов. Наряду с фотолизом для получения свободных радика.юв используется и радиолиз. [c.148]

    Двухступенчатое фторирование с применением фтор-галогенов [6-193]. Как отмечалось, лимитирующей стадией фторирования является диффузия фтора в углеродную матрицу. Частично это ограничение можно преодолеть, используя двухступенчатое фторирование. С указанной целью вначале получали МСС с частично фторированной углеродной матрицей [6-189]. В качестве фторирующих агентов использовали BrFj и BrFa, а углеродная матрица — графит Завальевского месторождения. При этом получали фторированные образцы с F/ от 0,4 до 0,5 и с межслоевым расстоянием не менее 0,6 нм. Обработка этих образцов при 670-770К газообразным фтором позволила превратить МСС в монофторид углерода с F/ =l. Фторирование при идентичных условиях чешуйчатого графита другой структуры дает F/ 0,7. [c.412]

    Метод диффузионных пламен впервые был применен М. Поляни для исследования кинетики реакций атомов щелочных металлов с галогенами и галогенсодержащими молекулами. Принцип этого метода заключается в следующем. Если из точечного источника в атмосферу однородно распределенного реагента М в диффузионном режиме вводится реагент N и между ними при каждом или почти при каждом столкновении протекает реакция M + N—>-Р с константой скорости к, то при постоянной массовой скорости ввода N и постоянной концентрации атмосферного реагента (т) стационарное распределение концентраций N п) в сферической зоне реакции описывается уравнением Пуассона  [c.305]


    Методика такого использования кинофильмов и телепередач еще мало разработана, однако из накопленного опыта ясна необходимость объяснения учащимся цели предстоящей демонстрации. Например Этот фильм познакомит нас еще с одним элементом группы галогенов — фтором . Продолжить изучение химических свойств металлов нам поможет телепередача. В первой части ее вы узнаете о процессах разрушения металлических изделий и сооружений в результате коррозии . Вам уже известно применение кислородного дутья в доменном процессе. Это далеко не единственная возможность использования кислорода для интенсификации металлургических производств. Кислород широко применяется также в производстве стали. Об этом вы узнаете из предлагаемого кинофильма . [c.143]

    Одним из направлений совершенствования химического эксперимента может быть его взаимосвязь с педагогической техникой (проекционной аппаратурой) и электроникой. Необходимость разработки методических и технических основ этой взаимосвязи объясняется трудностями, которые испытывают учителя при работе с едкими и токсичными веществами бензолом, фенолом, анилином, формалином, сероводородом, озоном, галогенами и др. Велики также экономические и трудовые затраты на подготовку многих демонстрационных опытов. Это ограничивает область их применения как средства иллюстрации, проверки и закрепления полученных знаний .  [c.149]

    Применение галогенов и их важнейших природных соединений [c.171]

    Цепными реакциями помимо реакций с галогенами и процессов термического распада являются многие реакции окисления органических и неорганических веществ кислородом, а также процессы полимеризации мономеров, содержащих двойные связи. Например, полимеризация амида акриловой кислоты СН 2 = СН — ONHg, которая в последние годы нашла широкое применение в биохимии для получения полиакриламидных гелей, позволяющих эффективно проводить разделение сложных смесей белков и нуклеиновых кислот. [c.317]

    Окисление такого типа происходит под действием многих окисляющих агентов, в том числе хлорного железа, перекиси водорода, соединений с положительным галогеном (стр. 131) и самих галогенов. Применение перекиси водорода иллюстрируется получением ди-(п-аминофенил)-дисульфи-да из натриевой соли л-аминотиофенола (СОП, 4, 150) ] [c.221]

    В данном разделе речь пойдет о процессах галогенирования, под которыми подразумеваются все реакции введения в органические соединения атомов галогенов. Чаще всего это хлор из-за доступности и дешевизны, который получают электролизом раствора хлорида натрия. Хлорирование углеводородов и других органических соединений является очень важньш направлением органического синтеза, поскольку этим методом производят самые различные продукты, находящие широкое применение в народном хозяйстве. Это полупродукты для органического синтеза (хлористый метил, этил, аллил, хлорбензол, хлоргидрины, из которых получают XJюpoлeфины, спирты, окиси олефинов и т.д.) мономеры для получения смол, пластмасс, волокон (винилхлорид, хлоропрен, 1,2-дихлорэтан, монохлортрифторэтилен, тетрафторэтилен и т.д.) различные пестициды, хладоагенты, растворители, медицинские препараты и т.д. [c.75]

    Фосфор — более активный элемент, чем азот он легко соединяется с кислородом, серой, галогенами и многими металлами. Соединения фосфора с металлами называются фосфидами. Они имеют практическое применение в осветительных составах (MgsPj, ZnaPa и др.) и как средство для борьбы с вредителями сельского хозяйства. Фосфор используется в спичечном производстве, в металлургии для получения и легирования полупроводниковых материалов, в химической промышленности. [c.134]

    Применение импульсных спектрометров ЯКР позволяет обнаруживать сигналы большой ширины ( 2% от значения частоты против - 0,02% при стационарных методах). Это сделало возможным исследование структур с неустранимыми элементами беспорядка. К таким системам относятся, в частности, кристаллические полимеры. Данные спектроскопии ЯКР позволяют судить о структуре, характере расположения и подвижности полимерных молекул в кристалле. Изучены спектры ряда хлорсодержащих полимеров. У поливинилхлорида, например, в спектре найдено восемь компонентов сигнала, которым должно соответствовать восемь типов кристаллографически неэквивалентных атомов хлора. Частотный диапазон сигнала от 36,56 до 38,18 МГц свидетельствует о наличии химической неэквивалентности (различном химическом окружении) атомов С1 в полимере. Изучались и неорганические полимеры с малой степенью беспорядка и достаточно уакими линиями, например, на основе (МГал2) и (МГалз)п, где М —металл, а Гал —галоген. [c.104]

    Особенно важно применение графопроектора при изучении систематики химических элементов и их соединений. Возможность демонстрировать таблицы, показывающие закономерное изменение свойств элементов и их соединений по группам и периодам, позволяет использовать метод сопоставления и сравнения. Так, при изучении галогенов, халькогенов, элементов V группы весьма эффективны обобщающие таблицы по характеристике свойств одиночных атомов (радиус, электроотрицательность, энергия ионизации и пр.), свойств простых веществ (плотность, температуры кипения, плавления, агрегатное состояние, цвет, масса [c.132]

    Как уже говорилось выше, водород также можно присоединить к галогенам, так как он может образовать ионы Н", которые, как и ионы галогенов (F , l", Вг, I, At ), изоэлектронны атомам благородных газов (соответственно Не, Ne, Аг, Кг, Хе, Rn). К этому признаку сходства можно добавить газообразное состояние водорода, двухатомность его молекул, легкость замещения водорода в органических соединениях галогенами, близость энергий разложения молекул На и Hal2, соизмеримость потенциалов ионизации водорода и первых потенциалов ионизации галогенов и т, д. Разумеется, нельзя не учитывать отличие водорода от галогенов (оно обусловлено тем, что галогены как р-элементы образуют соединения, в которых имеют степень окисления больше единицы). Однако аналогия в свойствах водорода и галогенов более значительна, чем в свойствах водорода и металлов (см. стр. 90). Есть еще один серьезный довод в пользу этого утверждения — результаты применения методов сравнительного расчета. На одном примере это иллюстрируется рио. 37 на нем сопоставлены температуры и теплоты плавления в ряду галогенов точка для водорода оказалась на одной прямой о точками для гало- [c.95]


Смотреть страницы где упоминается термин Галогены применение: [c.321]    [c.156]    [c.279]    [c.279]    [c.150]    [c.101]    [c.291]    [c.297]    [c.221]    [c.599]    [c.139]    [c.282]   
Неорганическая химия (1981) -- [ c.268 ]

Общая химия в формулах, определениях, схемах (1996) -- [ c.386 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.386 ]

Общая химия в формулах, определениях, схемах (1985) -- [ c.386 ]

Общая химия в формулах, определениях, схемах (0) -- [ c.386 ]

Курс неорганической химии (1963) -- [ c.838 ]

Неорганическая химия (1981) -- [ c.268 ]

Основы общей химии Том 2 Издание 3 (1973) -- [ c.270 , c.570 ]

Курс неорганической химии (1972) -- [ c.750 ]




ПОИСК





Смотрите так же термины и статьи:

Бром и йод История Триады галогенов. Иод и бром в природе. Получение и применение брома и йода. Соединения, в которых бром и йод электроотрицательны. Соединения, в которых бром и йод электроположительны. Астатий

Галоген оксихинолин сульфокислоты применение

Галогенные соединения применение для калибровки прибор

Галогенные соединения структурой и масс-спектрами применение для калибровки прибор

Галогены применение при анализе

Получение и применение галогенов

Применение в металлургии двойных и сложных солей, образуемых галогенами с металлами

Применение галогенов и их неорганических соединений

Применение галогенов и их производных

Применение галогенов н их соединений

Присоединение галогенов и галогенводородов Таутомерия. Присоединение спиртов Присоединение синильной кислоты. Окисление Замещение водорода галогенами. Металлирование Взаимодействие с карбонильными соединениями Полимеризация. Изомеризация по Фаворскому Применение алкинов

Фториды галогенов, их получение и применение в органической химии. У. Масгрейв Фториды иода



© 2025 chem21.info Реклама на сайте