Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Определение меди в магнии

    Спектральное определение меди, серебра, висмута, алюминия, кремния магния, свинца, железа, золота, сурьмы, мышьяка и олова в теллуре Химико-спектральное определение алюминия, висмута, галлия, железа кадмия, кобальта, магния, марганца, меди, никеля, свинца, серебра I [c.527]

    Анализ алюминия и его сплавов обычно сводится к определению железа, кремния, меди, магния, марганца, реже калия, натрия, цинка, кальция, никеля. Добавление указанных элементов изменяет свойства чистого алюминия. Так, марганец повышает устойчивость к коррозии, но понижает пластичность магний уменьшает массу и повышает прочность кремний увеличивает прочность, но уменьшает пластичность медь увеличивает прочность. Состав некоторых алюминиевых сплавов приведен в табл. 36. [c.377]


    Лампа аналогичной конструкции описана в [172]. Лампу непрерывно откачивают форвакуумным насосом (ВН-464, ВН-491) с одновременной подачей инертного газа (аргон, давление I мм рт. ст.) и питают от стабилизированного источника переменного тока через сопротивление (от 2 до 10 ком) и дроссель переменной индуктивности (функцию последнего выполняет автотрансформатор ЛАТР-2). Для атомно-абсорбционного определения меди, магния, железа и никеля используются катоды из этих металлов для определения цинка —катод из латуни для определения лития, серебра, золота, висмута — катоды из железа или графита, внутрь которых помещают соединения указанных элементов. Автор отмечает, что при закрытых вакуумных кранах лампа описанной конструкции может работать без откачки несколько часов- [c.19]

    Атомно-абсорбционный метод является достаточно чувствительным для определения кальция, магния и калия в природных и сточных водах, железа, никеля, кобальта, меди, хрома и цинка в сточных водах машиностроительного и приборостроительного производства, цветной и черной металлургии. Отсутствие влияния основы сточных вод на фоне большого количества взвешенных веществ, цианидов и нефтепродуктов позволяет определять примеси в данных сточных водах по водным растворам сравнения. [c.68]

    Значительное усиление сигнала нз блюдается при использовании смешанных растворителей. При определении меди, магния и цинка и применении в качестве растворителя метанола аналитический сигаал увеличивается по сравнению с аналитическим сигналом, полученным при использовании воды, примерно в 3 раза, диэтилового эфира —в 6—8 раз, смесей метанола с диэтиловым эфиром в соотношении (1 4) — (1 9) в 10— 14 раз [70]. [c.41]

    Спектральное определение меди в растворе проводят, фото-метрируя аналитическую пару линий Си 515,32 — Mg 516,73 нм. Эти линии гомологичны, так как медь и магний имеют близкие потенциалы ионизации, соответственно 7,72 эВ и 7,64 эВ, вы- [c.23]

    Какие весовые способы применяются для определения а) магния, олова, сульфида б) меди, кальция, иодида в) алюминия, молибдена, фосфата г) цинка, серебра, сульфата д) железа, висмута, бромида  [c.67]

    Для устранения влияния структуры твердой пробы на результаты анализа иногда применяют ее плавление. Введение расплава существенно повышает точность, если удается поддерживать постоянной его температуру. Например, при анализе алюминия и алюминиевых сплавов плавление образцов позволяет повысить точность определения меди, цинка, магния и других элементов в 1,5—2,5 раза. Искру зажигают между поверхностью расплава и подставным электродом. [c.256]


    Свойства. Применяют в кислой среде (при pH 2—3) для определения висмута и тория (IV). В щелочной среде определяют кадмий, кобальт, медь, магний, марганец, никель и цинк. [c.273]

    Магний первичный. Методы определения меди [c.572]

    Бронзы безоловянные. Метод спектрального анализа по окисным стандартным образцам с фотографической регистрацией спектра Бронзы безоловянные. Метод рентгеноспектрального флуоресцентного определения алюминия Бронзы жаропрочные. Метод определения меди Бронзы жаропрочные. Методы определения кремния Бронзы жаропрочные. Методы определения хрома Бронзы жаропрочные. Метод определения фосфора Бронзы жаропрочные. Методы определения железа Бронзы жаропрочные. Метод определения никеля Бронзы жаропрочные. Метод определения свинца Бронзы жаропрочные. Методы определения циркония Бронзы жаропрочные. Метод определения кобальта Бронзы жаропрочные. Методы определения титана Бронзы жаропрочные. Определение хрома, никеля, кобальта, железа, цинка, магния и титана методом атомно-абсорбционной спектрометрии [c.576]

    Баббиты кальциевые. Метод определения содержания алюминия Баббиты кальциевые. Метод определения содержания магния Баббиты кальциевые. Метод определения содержания олова Баббиты кальциевые. Метод определения содержания сурьмы Баббиты кальциевые. Метод определения содержания висмута Баббиты кальциевые. Метод определения содержания меди [c.580]

    Работа 31. Определение меди в металлических кобальте, никеле, кадмии, марганце и магнии [c.280]

    Определение меди полярографическим методом. Навеску сплава растворяют в соляной кислоте, при этом алюминий и магний переходят в раствор  [c.379]

    Разработана методика химико-спектрального определения меди, свинца, кадмия, висмута, серебра, индия, цинка, алюминия, никеля, кобальта, марганца, хрома, магния, кальция и платины в сурьме высокой чистоты с чувствительностью до 5-10" %. [c.199]

    Разработаны атомно-абсорбционные методики определения меди, никеля, кобальта, кадмия, железа, цинка, марганца, свинца, кальция, магния и калия в сточных и природных водах при содержании 0,005—1 мг/л ртути экстракционным пламенно-фотометрическим методом в сточных водах на уровне [c.193]

    Остановимся еще раз на отдельных, наиболее важных методах анализа минерального сырья. В геологической службе широко распространены спектральные методы, особенно эмиссионный спектральный анализ. Огромное число проб — примерно восемь миллионов в год — анализируют методом полуколичественного спектрального анализа, используя разработанный в СССР (А. К. Русанов и др.) способ вдувания порошков в дугу. Это основной прием, применяющийся при поиске скрытых месторождений полезных ископаемых. Используют, конечно, и количественные методы. Существуют трудности при изготовлении стандартных образцов для спектрального анализа, пока мало используется предварительное концентрирование микроэлементов. Как уже говорилось, недостаточно применяются атомно-абсорбционные методы, что обусловлено отсутствием массового отечественного производства атом-но-абсорбционных спектрофотометров. Эти методы используют для определения кальция, магния, меди, свинца, цинка. [c.110]

    Градуировочный график з прямолинеен для концентраций меди до 30 мкг/мл. Соляная кислота мешает определению меди при использовании латунных горелок вследствие попадания меди из горелки в пламя. Серная, азотная и фосфорная кислоты в концентрации до 1% не влияют на точность анализа. Также не влияют на точность анализа соли алюминия, цинка и железа при соотношениях Ме Си=1000 и марганца, никеля и магния при соотношениях Ме Си=100. [c.224]

    ХИМИКО-СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ АЛЮМИНИЯ, ТИТАНА, КРЕМНИЯ, СВИНЦА, МЕДИ, МАГНИЯ И МАРГАНЦА В АРСЕНИДЕ ГАЛЛИЯ i [c.161]

    СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ МЕДИ, ЖЕЛЕЗА, НИКЕЛЯ, МАРГАНЦА, РТУТИ, СЕРЕБРА, ВИСМУТА, СВИНЦА, ОЛОВА, КАДМИЯ, МАГНИЯ, АЛЮМИНИЯ, СУРЬМЫ, ТЕЛЛУРА, КРЕМНИЯ, ЗОЛОТА И МЫШЬЯКА [c.457]

    СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ МЕДИ, СЕРЕБРА, ВИСМУТА, АЛЮМИНИЯ, КРЕМНИЯ, МАГНИЯ, СВИНЦА, ЖЕЛЕЗА, [c.460]

    ХИМИКО-СПЕКТРАЛЬНОЕ ОПРЕДЕЛЕНИЕ АЛЮМИНИЯ, ВИСМУТА, ГАЛЛИЯ, ЖЕЛЕЗА. ИНДИЯ, КАЛЬЦИЯ, МЕДИ, МАГНИЯ, [c.511]

    Спектральное определение меди, железа, никеля, марганца, ртути, серебра висмута, свинца, олова, кадмия, магния, алюминия, сурьмы, теллура [c.527]

    Сплавы медно-цинковые. Методы определения кремния Сплавы медно-цинковые. Методы определения фосфора Бронзы оловянные. Методы определения меди Бронзы оловянные. Методы определения свинца Бронзы оловянные. Методы определения олова Бронзы оловянные. Методы определения фосфора Бронзы оловянные. Методы определения никеля Бронзы оловя1шые. Методы определения цинка Бронзы оловянные. Методы определения железа Бронзы оловянные. Методы определения алюминия Бронзы оловянные. Методы определения кремния Бронзы оловянные. Методы определения сурьмы Бронзы оловянные. Методы определения висмута Бронзы оловянные. Методы определения серы Бронзы оловянные. Метод определения марганца Бронзы оловянные. Метод определения магния Бронзы оловянные. Методы определения мышьяка Бронзы оловянные. Метод определения титана Сплавы медно-фосфористые. Технические условия Бронзы оловянные, обрабатываемые давлением. Марки Сплавы медно-фосфористые. Методы определения содержания фосфора [c.574]


    Химико-спектральное определение бериллия, магния, кальция, бария, алюминия, титана, ванадия, вольфрама, хрома, марганца, железа, кобальта, никеля, меди, серебра, золота, цинка, кадмия, индия, олова, свинца, висмута, галлия и сурьмы в боре, борном ангидриде и борной кислоте Химико-спектральное определение магния, кремния, алюминия, меди, свинца, железа, фосфора, мышьяка, молибдена и натрия в боре..... [c.527]

    Химико-спектральное определение алюминия, висмута, галлия, железа, индия, кальция, меди, магния, марганца, никеля, олова, свинца, сурьмы, серебра, таллия, тантала, титана, хрома и цинка в фтористоводородной, [c.528]

    Вторая съемка спектров производится для определения железа, магния, марганца, кремния, кобальта, меди и алюминия. Используется кварцевый спектрограф средней дисперсии с трехступенчатым ослабителем. [c.145]

    Вторая съемка служит для определения железа, магния, марганца, кремния, кобальта, меди и алюминия. [c.146]

    Описанную аппаратуру используют для анализа химических реактивов и особо чистых химических веществ (определение меди, магния, кальция, натрия и др.), определения неорганических микропримесей в органических растворителях высокой чистоты (цинк, кадмий, висмут в ацетоне, медь в спиртах), а также для анализа материалов квантовой электроники (определение основных компонентов полупроводниковых сплавов). [c.182]

    Во второе издание книги внесены следующие изменения и дополнения 1) согласно учебной программе, включены новые разделы Кальций , Магний и Фосфор 2) предусмотрено применение посуды из стеклоуглерода вместо дорогостоящей — платины 3) приведена методика определения меди в сплавах способом внутреннего электролиза с использованием катодов в виде тигля из стеклоуглерода (методика разработана преподавателями МИСиС В. П. Гладышевым и Л. 3. Козель) 4) приведен ряд новых методик (например, определения свинца, железа) некоторые методики исключены. [c.4]

    Осмотические коэффициенты и коэффициенты активности хлоридов марганца, кобальта, никеля, меди, магния, кальция, стронция и бария, а также бромида и иодида магния были определены Робинзоном [9] путем изопиестических измерений упругости пара для концентраций растворов от 0,1 до 1,6, а в некоторых опытах— до2Д/. Стандартным раствором для всех этих изопиестических измерений служил раствор хлористого натрия (см. стр. 276 и 354). Значения при 25° приведены в табл. 151. Для хлористых бария и стронция, как видно из данных, нриведенных в табл. 90, результаты изопиестических измерений совпадают с результатами, полученными путем измерений электродвижущих сил. Кроме того, значения, определенные нри помощи кальциевого амальгамного элемента, сильно отличаются от соответствующих значений, полученных путем измерений упругости пара. [c.390]

    Титан губчатый. Метод определения азота Титан губчатый. Метод определения железа Титан губчатый. Методы определения углерода Титан губчатый. Методы определения хлора Титан губчатый. Методы определения кислорода Титан губчатый. Метод определения алюминия Титан губчатый. Метод определения кремния Титан губчатый. Метод определения ниобия и тантала Титан губчатый. Метод определения меди Титан губчатый. Метод определения циркония Титан губчатый. Метод определения олова Титан губчатый. Метод определения магния Титан губчатый. Метод определения молибдена Титан губчатый. Метод определения вольфрама Титан губчатый. Метод определеш1я палладия Титан губчатый. Метод определения марганца Титан губчатый. Метод определения хрома Титан губчатый. Метод определения ванадия Титан губчатый. Методы определения водорода Титан губчатый. Методы определения никеля [c.569]

    Для фотометрического анализа большое значение имеют окрашенные комплексные соединения, в которых полоса поглощения обусловлена главдым образом электронными переходами в лиганде. К этой группе относятся соединения красителей с различными металлами. Особое значение рассматриваемая группа имеет для фотометрического определения металлов, не обладающих хромофорными свойствами, как, например, бериллий, магний, алюминий, индий, олово и многие другие. Органические реактивы типа красителей имеют известное значение также для определения элементов, имеющих собственные хромофорные свойства. Правда, для этих элементов реакции с органическими красителями менее специфичны, но зато они более чувствительны. Например, определение меди в виде аммиаката, разумеется, более специфично, чем определение меди дитизоном. Присутствие серебра, цинка, кадмия и других элементов, не имеющих хромофорных свойств, не мешает определению меди в виде аммиаката. Однако чувствительность определения мала молярный коэффициент светопоглощения аммиаката меди (е 3+) равен 120 [15]. [c.77]

    Метод определения сурьмы Метод определения меди Метод определения висмута Метод определения мышьяка Метод определения цинка и меди Метод определения натрия Метод определения железа Метод огфеделенм кальция Метод определения магния Метод определения олова Метод определения теллура Методы определения серебра Методы определения никеля Спектральный метод определения [c.580]

    При прямом титровании комплексоном П1 концентрация определяемого катиона сначала понижается постепенно, но вблизи точки эквивалентности падает очень резко. Это позволяет определять конечную точку титрования по мгновенному изменению окраски индикатора. Прямое титрование комплексо1гом Н1 применяют для определения катионов магния, кальция, стронция, бария, цинка, кобальта(Н), нике-ля(И), меди(П), железа(ХП) и некоторых других. [c.295]

    Поток тепловых нейтронов составлял 1,6—2,6-10 н/см -с, быстрых — 2,6—6,5-10 н/см -с. При определении меди-64, ртути-203 введены корректирующие коэффициенты, которые учитывают мешающее влияние радиоизотопов натрия-24, калия-42, лаптапа-140, селена-75. Концентрации натрия, алюминия, серы, хлора, калия, ванадия, хрома, л<елеза, кобальта, никеля, меди, мышьяка, селена могут быть установлены с воспроизводимостью менее 10%. Значения концентраций таких элементов, как магний, цинк, молибден, сурьма, барий, ртуть, торий, часто приближаются к пределу их обнаружения. Также было исследовано влияние гомогенности образцов на воспроизводимость результатов. [c.92]

    Катиониты сильнокислотного тина (преимущественно в Н-форме) широко используются для концентрирования различных катионов, содержащихся в природных и промышленных водах — кальция и магния [44], бериллия [38], меди [3], свинца [3, 26,41], кобальта [27], серебра, цинка и никеля [4]. В определениях этого типа статический метод применяется наряду с динамическим. Катионы обычно элюируют 4M НС1 и затем определяют стандартными методами. Концентрирование катионов применялось также для определения меди и железа в дистиллированной воде [52] и в воде, используемой в,паровых котлах [5]. Медь количественно поглощается даже при концентрациях, меньших 1 ме/л. Полностью определяется также железо (П1), хотя в этом случае при работе с неподкисленными растворами могут встречаться известные трудности (гл. 9. 6). [c.279]

    Определению меди не мешают Ы, Na, К, КЬ, Mg, Зг, Са, Ва, А1, Hg, РЬ, ЗЬ"" , ЗЬ , Сг, Зе, Со, Т1, Р(1, Сс1, Ки, Ав, Ag. В присутствии железа, марганца, никеля и магния в количествах ЪОу ъ Ъ мл раствора флуоресценция не обнаруя ивается, несмотря на наличие меди. [c.166]


Смотреть страницы где упоминается термин Определение меди в магнии: [c.108]    [c.199]    [c.690]    [c.66]    [c.98]    [c.218]    [c.286]   
Смотреть главы в:

Полярографический анализ -> Определение меди в магнии




ПОИСК





Смотрите так же термины и статьи:

Бериллий фотометрическое определение в алюминии, магнии и меди с сернистым

Колориметрическое определение меди, никеля, железа, алюминия, кальция, магния и кремния

Магний определение

Медь, определение

Определение 5-10-5 меди в окиси магния. Е. А. Божевольнов, С. У. Крейнгольд

Определение железа, алюминия, кальция, магния, меди, марганца, J кобальта, кадмия, хрома, свинца, никеля, молибдена, ванадия в я активных углях и цинк-ацетатных катализаторах на их основе

Определение ионов меди (II), цинка, кальция и магния

Определение магния меди и сплавах меди

Определение меди в металлических кобальте, никеле, кадмии, марганце, алюминии и магнии

Определение меди в техническом магнии

Определение цинка, кадмия, алюминия, висмута, кобальта, марганца, олова, свинца, меди, магния, кремния, железа, мышьяка и сурьмы спектральным методом

Прямое определение железа, кадмия, кальция, кобальта, магния, марганца, меди, никеля, свинца, серебра, хрома и цинка

Раздельное определение аэрозолей окислов алюминия, магния, марганца, железа, цинка и меди при их совместном присутствии

Редкоземельные элементы определение в алюминии, железе, кадмии, кальции, магнии, меди, почве

Спектральное и химико-спектральное определение алюминия, висмута, железа, индия, кадмия, кобальта, магния, марганца, меди, никеля, свинца и хрома в галлии и хлориде галлия

Спектральное определение алюминия, бора, железа, магния, марганца, меди, никеля, олова, свинца, сурьмы, титана и хрома в карбиде кремния

Спектральное определение алюминия, кадмия, цинка, сурьмы, железа, свинца, фосфора, марганца, магния и меди в карбиде кремния

Спектральное определение алюминия, кальция, кобальта, хрома, меди, железа, магния, марганца, никеля, титана и ванадия в двуокиси кремния и кварце

Спектральное определение железа, кремния, меди, магния, титана, свинца, марганца, олова и серебра в алюминии

Спектральное определение магния, меди и кремния в алюминии

Химико-спектральное определение алюминия, висмута, галлия, железа, золота, индия, кальция, магния, марганца, меди, никеля, свинца, сурьмы, олова, серебра, таллия, тантала, титана, хрома и цинка в германии, двуокиси германия и тетрахлориде германия

Химико-спектральное определение алюминия, висмута, железа, магния, марганца, меди, никеля, свинца, сурьмы и хрома в мышьяке

Химико-спектральное определение алюминия, висмута, индия, кадмия, магния, марганца, меди, никеля, свинца и цинка в таллии

Химико-спектральное определение алюминия, висмута, кадмия, кобальта, магния, меди, никеля, свинца, серебра и цинка в металлическом индии

Химико-спектральное определение алюминия, висмута, кадмия, магния, марганца, меди, никеля, свинца и цинка в индии

Химико-спектральное определение алюминия, висмута, магния, марганца, меди, никеля, свинца, серебра и хрома в арсениде галлия

Химико-спектральное определение алюминия, висмута, цинка, магния, марганца, никеля, свинца, серебра, сурьмы, галлия, олова, хрома и меди в двуокиси кремния с применением полого катода

Химико-спектральное определение алюминия, индия, кадмия, магния, марганца, меди, никеля, свинца, серебра и цинка в металлическом талии и хлориде таллия

Химико-спектральное определение алюминия, кадмия, магния, марганца, меди, никеля, свинца и цинка в фосфиде индия

Химико-спектральное определение алюминия, кадмия, магния, марганца, меди, никеля, свинца, цинка и серебра в висмуте

Химико-спектральное определение алюминия, титана, кремния, свинца, меди, магния и марганца в арсениде галлия

Химико-спектральное определение железа, меди, кремния, магния, марганца и титана в алюминии

Химико-спектральное определение меди, серебра, кадмия, магния, марганца, висмута, алюминия, титана, индия, кальция, свинца, хрома, кобальта, никеля и цинка в сурьме

Химико-спектральное определение серебра, алюминия, магния, индия, молибдена, циркония, железа, титана, меди, марганца, никеля, свинца, хрома, олова, висмута, галлия, кальция, цинка и сурьмы в трихлорсилане без применения гидролиза

магния меди



© 2024 chem21.info Реклама на сайте