Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Алюминий соли, анализ

    Исходя из свойств некоторых органических соединений, применяемых в анализе, перспективными для качественного обнаружения ионов металлов метод адсорбционно-комплексообразовательной хроматографии являются (в скобках указаны определяемые элементы) ализарин С (алюминий, циоконий, торий) алюминон (алюминий, бериллий) арсеназо III (цирконий, гафний, торий, уран, редкоземельные элементы) диметилглиоксим [никель, кобальт, железо (II), палладий (И)] 2,2 -дипиридил [железо (И)] дитизон (серебро, висмут, ртуть, свинец, цинк) дифенил-карбазид [хром (VI)] 2-нитрозо-1-нафтол (кобальт) нитро-зо-Н-соль (кобальт) рубеановая кислота [железо (III), [c.248]


    При растворении следует стремиться к тому, чтобы вещество растворилось полностью, независимо от того, полный или неполный анализ требуется провести. Многие неорганические соли и некоторые органические соединения хорошо растворяются в воде, подкисленной минеральными кислотами, чтобы предотвратить гидролиз (соли железа, висмута и др.). Органические соединения хорошо растворяются в органических растворителях - спирте, ацетоне, хлороформе и др. Большинство металлов и сплавов, а также оксидов, карбонатов, сульфидов и др. растворяется в разбавленных или концентрированных кислотах. Выбор кислот осуществляется на основании химических свойств растворяемых веществ. Так, сплавы и оксиды железа лучше растворять в хлороводородной (соляной) кислоте вследствие склонности Ре " к образованию хлоридных комплексов хром и алюминий не растворяются в азотной кислоте из-за образования на поверхности пассивирующей оксидной пленки и т.д. [c.49]

    Химический состав. Кремнезем, стабилизирующее основание, углерод, включая диоксид углерода и углерод в органическом соединении, растворимые соли щелочных металлов. Химическим анализом определяется общее содержание твердых веществ, содержание золы без включений кремнезема, металлов, в том числе алюминия и железа. [c.467]

    СЯ избыточное содержание водорастворимых соединений железа (II), марганца, алюминия. Анализ водных вытяжек при выявлении причины засоления почв дополняют анализом грунтовых вод. В табл. 19.3 дана классификация почв по содержанию токсичных солей. [c.369]

    При анализе шлаков и других материалов иногда необходимо получить данные только о содержании кальция. Между тем, при обычном методе разделения сначала необходимо осаждать гидроокиси алюминия и железа. В этих случаях также применяют виннокислые соли для связывания алюминия и железа присутствие небольшого избытка виннокислых солей не мешает количественному осаждению кальция (при достаточном избытке щавелевой кислоты). [c.107]

    Комплексонометрический метод. Комплексонометрическое титрование свинца проводят в аммонийно-аммиачной буферной среде pH 10 или в ацетатной среде pH 6,5—7 соответственно с индикаторами эриохромчерным Т (см. Алюминий ) нли ксиленоловым оранжевым (см. Алюминий ). В среде pH 8—9 применяют также сульфарсазен (см. Никель ) в качестве индикатора, обладающий четким переходом окраски в эквивалентной точке. При анализе сложных систем требуется предварительное отделение мешающих элементов. Например, свинец отделяют от сопутствующих элементов в виде сульфата, растворяют осадок в избытке комплексона HI и титруют свинец раствором соли цинка способом обратного титрования. [c.114]


    Комплексонометрический анализ различных сплавов, руд и концентратов. При комплексонометрическом анализе сложных объектов используют обычные приемы химического разделения (осаждение, ионный обмен, экстракция и т. д.) и маскировки (цианидом, фторидом, триэтаноламином, оксикислотами и другими реагентами), но почти все компоненты определяют комплексо-нометрическим титрованием. Например, при анализе сплавов цветных металлов, содержащих медь, свинец, цинк и алюминий (бронзы, латуни и т. д.), медь определяют иодометрически, а свинец и цинк — комплексонометрически после оттитровывания меди. Перед определением свинца цинк маскируют цианидом, алюминий — фторидом и титрование производят в присутствии соли магния. Затем демаскируют цинк, связанный в цианидный комплекс, раствором формалина и титруют ЭДТА. [c.244]

    Вполне пригодно титрование растворами соли алюминия при анализе дистиллятов. Присутствие небольшого количества сульфатов не мешает определению. [c.85]

    Барий, кальций, магний, цинк, железо, алюминий, соли щелочных металлов, лимонная кислота и ее соли, хром, в 18 раз превышающие содержание фосфора, и титан — в 3,5 раза — не влияют на результаты анализа. [c.452]

    При анализе азотнокислых и азотистокислых солей (анализ удобрений и т. д.) их предварительно восстаналивают до аммиака, а затем, исходя из количества полученного ЫНз, вычисляют содержание нитратов или нитритов. Восстановление обычно ведут в щелочной среде цинком или сплавом цинка, меди и алюминия [c.335]

    Соли многих часто встречающихся в анализе элементов сильно гидролизуются. Особенно неустойчивы разбавленные растворы гидролизующихся солей. Например, уже в день приготовления разбавленные растворы железа(П1) заметно снижают из-за гидролиза свою концентрацию. В растворе солей поливалентных металлов может происходить полимеризация или поликонденсация их ионов, что также приводит к снижению концентрации этих элементов при стоянии растворов. Это особенно характерно для солей алюминия, железа, молибдена, циркония, тория, вольфрама. Растворы гидролизующихся солей сильных кислот полезно подкислять при хранении и выпарива- [c.21]

    Ввиду близости спектральных линий На (589,0—589,6 нм) и полосы СаОН (622 нм) определение этих элементов с помощью фильтровых фотометров недостаточно селективно и зависит от характеристик светофильтров и концентраций элементов в растворе. Факторы специфичности для определения натрия в присутствии кальция 15—660, для кальция в присутствии натрия— 10—600. Если применяют фотометры, для которых факторы специфичности малы, то перед определением натрия и кальция их разделяют или вводят соли алюминия. Влияние элементов может или отсутствовать, или проявляться в незначительной степени в зависимости от прибора, что можно проверить по отношению к чистым растворам каждого элемента и учесть при проведении анализа. При использовании фотометра типа ФПЛ-1 селективность определения этих элементов повышают за счет дополнительных абсорбционных светофильтров. [c.20]

    К первой группе методов относится прежде всего весовой анализ. Для весового определения, например алюминия в его соли (или в растворе соли), ионы А1" осаждают гидроокисью аммония, осадок гидроокиси алюминия прокаливают и затем взвешивают образовавшуюся окись алюминия. Если имеют в виду выполнить любое количественное определение, основанное на измерении количества продукта реакции, очевидно, главное внимание должно быть уделено возможно более полному переведению определяемого компонента в продукт реакции. Образующийся осадок должен быть практически нерастворим .  [c.23]

    Гидроокись аммония обычно применяют в присутствии аммонийных солей, которые значительно уменьшают ее диссоциацию. Наиболее часто этот метод применяется при отделении алюминия, железа и титана от кальция, магния и ряда других катионов. Значительные затруднения при этом вызывает марганец, который при малом избытке гидроокиси аммония не осаждается в виде Мп(0Н)2, однако под влиянием кислорода воздуха окисляется и частично осаждается в виде гидрата окисла высшей валентности. Поэтому при большом количестве марганца осаждение его гидроокисью аммония ведут в присутствии окислителей, например надсернокислого аммония. В этом случае марганец количественно переходит в осадок вместе с алюминием и железом. Осадок гидроокисей алюминия и железа обычно захватывает часть кальция и магния. Поэтому при точных анализах осадок, после отделения его фильтрованием, растворяют в соляной кислоте и повторяют осаждение. Чтобы уменьшить переход в осадок кальция и магния, при осаждении лучше избегать значительного избытка гидроокиси аммония с этой целью осаждение удобно вести в присутствии индикатора, например метилкрасного, который при pH 5 изменяет цвет от красного к желтому. [c.96]


    На основании анализа опубликованных данных и наших исследований можно сделать заключение, что воздух, который не оказывает заметного влияния на усталость гладких образцов и который обычно принимают за эталонную среду при сравнении агрессивности сред, существенно снижает сопротивление усталостному разрушению металлов по сравнению с вакуумом или очищенными газами. Вода и водные растворы солей и кислот также увеличивают скорость развития усталостных трещин в сплавах на основе железа, алюминия, титана и других металлов. [c.86]

    Отложения с наружной стороны низкотемпературных поверхностей нагрева мазутных парогенераторов, например с пластин регенеративных воздухоподогревателей, с трубок водяных экономайзеров, содержат сернокислые соли железа, никеля, ванадия, меди и свободную серную кислоту. Коррозионные образования в трубках пароперегревателей кроме окислов железа содержат хром, марганец, молибден и другие вещества. Эти материалы отличаются исключительной стойкостью, и обычно их удается перевести в раствор лишь нагреванием в смеси серной и фосфорной кислот. Сплавление с содой, едкими щелочами, пирофосфатом или гексаметафосфатом натрня практически не приводит к разложению этого материала. Отложения из парогенераторов высокого давления содержат в различных соотношениях окислы железа и алюминия, кремниевую кислоту, фосфаты железа, алюминия и кальция, металлическую медь, а иногда соединения цинка и магния. В качестве менее существенных примесей, а иногда и следов в накипи присутствуют марганец, хром, олово, свинец, никель, молибден, титан, вольфрам, стронций, барий, сурьма, бор, ванадий и некоторые другие элементы. При обычном анализе ограничиваются определением фосфатов, кремниевой кислоты, железа, меди, алюминия, натрия, кальция, магния и сульфатов. [c.411]

    Неорганическая молекула, содержащая несколько атомов, в том числе один или несколько атомов металла, называется неорганическим комплексом или координационным соединением. Примером может служить тетракарбонил никеля N (00)4- Неорганический комплекс, обладающий электрическим зарядом, называется комплексным ионом. Общеизвестные примеры комплексных ионов гексацианоферрат(П) Ре(СН)б , гексацианоферрат(П1) Ре(СН)в , гидратированный ион алюминия А1(Н20)Г и темно-голубой медно-аммиачный комплексный ион u(NHз)4 , образующийся при добавлении гидроокиси аммония к раствору соли меди(II). Комплексным ионам принадлежит важная роль в методах разделения, используемых в качественном и количественном химическом анализах, а также различных химико-технологических процессах. [c.471]

    Очистка сорбитного раствора от тяжелых металлов . Метод осаждения. Получаемый раствор D-сорбита содержит примеси солей тяжелых металлов (железа, меди, никеля) и алюминия. Эти примеси оказывают отрицательное влияние на последующий процесс окисления сорбита в сорбозу. Проведенные анализы показали, что в исследованном сорбитном растворе (из автоклава) содержалось (в%) железа 0,041, алюминия 0,0163, никеля [c.250]

    В почвах обменный натрий в основном определяют методом атом-но-эмиссионного анализа [340, 341, 695, 1062, 1238, 1267]. Мешающее влияние кальция устраняют введением в раствор солей алюминия и фосфата [1267]. [c.160]

    Следует также отметить, что кипячением с раствором карбоната натрия не всегда удается полностью удалить все катионы. Это имеет место тогда, когда в исследуемом веществе присутствуют катионы, способные давать растворимые соединения с избытком карбоната натрия, например при анализе солей алюминия, сурьмы, олова и др. Поэтому при нейтрализации раствора может иногда выделиться осадок гидроокисей или основных солей, которые следует отфильтровать. [c.102]

    Необходимые пояснения. В первой строке таблицы ( исходная вода ) приведены сведения о киевской воде, взятой из крана, и можно заметить, что водица в матери городов русских — это вам не чай Брук-бонд в двойных пакетиках и не пиво Три медведя . По органике, алюминию и железу нормы ВОЗ превышены в 2—4 раза, да и отечественным нормативам вода не слишком соответствует Поэтому авторы исследования проверяли, снижает ли филыр жесткость воды, сохраняет ли полезные соли, убирает ли избыток органики и тяжелых металлов. Результата оценивались в баллах, и эта оценка (О, или 0,5, или 1) дана через косую черту после каждого показателя, а в последней графе таблицы выведен общий балл. Можно заметить, что в графе Ре при одинаковых результатах 0,2 фильт-РУ Изумруд выставлен ноль, а филыру Р-ЗСЕ — единица. Я объясняю это так параметры исходной оды указаны в диапазоне (железо — 0,2—0,4 мг/л), но, вероятно, для каждого анализа измерялось содержание загрязнений на входе и выходе фильтра. [c.165]

    Осаждение РЗЭ в виде фторидов используется для их отделения от многих элементов. При осаждении РЗЭ из водного раствора их солей действием раствора фтористоводородной кислоты образуется аморфный слизистый, труднофильтруемый и промываемый осадок. Фторидный метод, как и оксалатный, позволяет отделить РЗЭ от железа, алюминия, титана, циркония, урана (VI), ниобия, тантала и некоторых других элементов. В ходе анализа обычно отделяют все РЗЭ от сопутствующих элементов путем осаждения в виде фторидов с последующего их осаждения в виде гидроксидов или оксалатов. Выделенное суммарное количество РЗЭ анализируют на содержание отдельных РЗЭ, используя, например, фотометрическое определение церия (IV), спектрофотометрические методы определения неодима, празеодима и т. д. (по собственному поглощению их солей), а также спектральное определение отдельных РЗЭ в их сумме. [c.198]

    При охлаждении субхлорид алюминия распадается на тонкодисперсный алюминий и хлорид алюминия. В застывшем расплаве вокруг королька алюминия всегда образуется темный слой соли. Анализ показывает, что в этом слое имеется металлический алюминий. Потери алюминия в расплавленных смесях КС1 + Na l возрастают с увеличением температуры и продолжительности (рис. 151). [c.269]

    Для контроля работы печи необходимо периодически производить анализ плава. Количество ВаЗ в плаве колеблется в пределах 65—75%. Кроме ВаЗ в плаве содержится невосстановленный барит, кислоторастворимые соли бария, окислы железа и алюминия и несгоревшая коксовая мелочь. Восстановление Ва304 продолжается 1 — 1,5 ч. [c.156]

    Для фазового анализа широко применяются химические методы. При этом используется обычно различная (избирательная) растворимость отдельных фазовых компонентов материала. Так, например, в фазовом анализе глин определяют содержание глинистого вещества (водного силиката алюминия и железа), полевого шпата (алюмосиликатов ш,елочных или щелочноземельных металлов) и кварца. Сначала глину обрабатывают в определенных условиях соляной или серной кислотой в результате глинистое вещество разлагается, а кварц и полевой шпат остаются без изменения. Отфильтровав раствор солей алюминия и железа, выделившуюся при разложении силиката аморфную кремневую кислоту переводят в раствор, нагревая с раствором соды. Взвесив нерастворимый остаток, можно по потере в весе вычислить количество глинистого вещества. После этого остаток обрабатывают плавиковой или борофтористоводородной кислотой, которые легко разлагают полевой шпат и очень медленно действуют на кварц. [c.14]

    В литературе имеются работы, посвященные галогензамещению гетероциклических соединений [58—60] В данном разделе на нескольких примерах рассмотрено поведение гетероциклических соединений при галогенировании и возникающие при этом проблемы. Галогенирование соединений этого типа протекает иногда с большим трудом, а иногда очень легко. Пиридин представляет собой пример гетероцикла, с большим трудом поддающегося галогенированию в контролируемых условиях. Его устойчивость объясняется тем, что злектрофильные катализаторы, применяемые при галогенировании, или образующиеся в ходе реакции галогеноводородные кислоты присоединяются к пиридину с образованием соли, невосприимчивой по отношению к электрофильной атаке. Так, например, можно ra.noгенировать комплекс хлористого алюминия и пиридина, однако реакция останавливается по достижении 50%-ного выхода (по данным анализа) или 30—40%-ного выхода (по количеству выделенного продукта) [61]. В данном случае считают, что первый комплекс (I) является достаточно активным, однако второй комплекс (П) слишком неактивен и не подвергается замещению. Остроумным методом [c.455]

    К. М. Ольшанова и Л. А. Куницкая [164] разработали методику качественного анализа катионов III и IV аналитических групп с помощью осадочной тонкослойной хроматографии. В качестве сорбента применяли оксид алюминия ( для хроматографии ) и силикагель КСК-2. Сорбенты без добавления связующего вещества наносили на стеклянную пластинку (9x12 см) слоем 0,4 мм. Для исследования применялись растворы соответствующих солей в пределах концентраций 0,1—0,25 н. по отношению к каждому катиону для открытия катионов применяли высокоселективные проявители, дающие специфическую окраску с исследуемым катионом. Несложная техника выполнения и быстрота метода дают возможность использовать его как контрольный при качественном анализе неорганических веществ. [c.210]

    Суммировать результат анализа топаза. (Топаз представляет основную ортокремневую соль алюминия, в которой гидроксил частично замещен фтором.) [c.44]

    Широко применяется последовательное титрование при разных pH, особенно при анализе смеси алю.миния и железа. Сначала при pH 1—2 титруют железо с индикатором сульфосалициловой кислотой. Затем создают pH 5—6, и избыток комплексона П1 оттитровывают раствором соли железа с тем же индикаторо.м. Описано множество аналогичных методов с применением других индикаторов для железа или же титрованиел алюминия другими методами. Иногда определяют сумму алюминия и железа, затем в другой аликвотной части определяют железо, а содержание алюминия находят по разности. Однако при этом не следует применять те методы, в которых разница между величинами pH, рекомендуемыми для определения Ре и А1, незначительна. Например, в работе [509] железо титруют прн pH 2 салициловой кислотой, а затем титруют алюминий при pH 3 с индикатором медь + ПАН. При определении алюминия и хрома в одном растворе использовано различие в прочности их комплексонатов при различных pH и в зависимости от продолжительности нагревания, так как комплексонат хрома образуется только после довольно длительного кипячения.В табл. 10 приведены способы определения алюминия в присутствии других металлов. [c.77]

    Катионы данной группы образуют слабые основания, мал растворимые в воде. Соли их в водных растворах подвергают гидролизу, соли, образованные сильными кислотами, имеь кислую реакцию. Соли ионов А1 , Fe и Сг , образованш слабыми кислотами, гидролизуются практически полностью. К тионы А1 , Zn и Сг образуют амфотерные гидроксид Амфотерные свойства гидроксидов алюминия, хрома(1П) и цин используют при анализе для отделения от большинства друг [c.148]

    Раствор, содержащий 2—20 Л1г алюминия, разбавляют до Ю0 мл, прибавляют 5мл 20%-ного раствора лимонной кислоты и небольшой избыток 7 М раствора МН40Н. Добавляют 3 г КСК и 1 г безводного Ма ЗОд. Перемешивают до растворения солей и разбавляют до 150—250 м.л. Медленно нагревают до 80—90° С и поддерживают эту температуру 2 мин. Затем вводят 1 г комплексона 1П и выдерживают при температуре 80—90° С в течение 2 мин. После охлаждения до 70° С прибавляют при энергичном перемешивании по 0,70 мл 2,5%-ного раствора оксихинолина (25 г реагента растворяют в 29 мл 6 М НС1, разбавляют водой до 1 л] на каждый миллиграмм алюминия и избыток 20 мл. Нагревают до 80—50° С и выдерживают раствор при этой температуре 30 мин. После охлаждения до 50° С раствор отфильтровывают декантацией через бумажный фильтр средней плотности. Осадок промывают небольшими порциями теплой (50— 60° С) промывной жидкости (см. стр. 35) декантацией. Расход промывной жидкости не должен превышать 100 В конце дважды промывают холодной водой, порциями 5—10 мл. Осадок зате.м растворяют и заканчивают анализ так же, как описано выше при осаждении из слабокислых растворов [645]. [c.83]

    Бабко и др. [37] при анализе МаС1 и МаНОд для повышения чувствительности и селективности предлагают экстрагировать комплекс алюминия изоамиловым спиртом из раствора с pH 6,4. Флуориметрический метод с салицилаль-о-аминофенолом использован для определения алюминия в НС1, НР, НаЗО , HNOз, НдОа, СНдСООН [58], в ОеС14 [57], в солях лития, рубидия и цезия [57], в солях свинца [168], в солях кадмия высокой чистоты [224], в олове высокой чистоты [228]. Чувствительность метода 10" —10 %, относительная ошибка 20%. [c.135]

    Как правило, основная масса окалины отслаивалась при охлаждении, и на поверхности металла во многих случаях оставался слой окислов, внедренных в металл на глубину 5-8 мкм. По данным микрорентгеноспектрального анализа, этот слой обогащен алюминием и содержит хром. В течение первых минут окисления при 800°С возникали летучие продукты. Спектральный анализ конденсата показал, что, помимо натрия, в нем содержатся железо, алюминий и хром . Это дает основание считать, что в начальный момент окисления продуктами взаимодействия соли с металлом являются хлориды или оксихлориды, летучие при высоких температурах. [c.130]

    Метод хроматографии иа бумаге используют для предварительного отделения марганца от урана при анализе последнего [771, 1299, 1гОО]. Так, при определении марганца и других примесей (Ср, Ni, Со, Си, d, Mo, Fe, Na и Au) в уране, используемом в реакторах [13001, производят отделение урана на бумаге Шлейхер — Шюлль 20 43А с помощью безводного диэтилового эфира, содержащего 5 объемн.% HNOg. Участок хроматограммы, содержащий примеси, затем облучают и производят дальнейшее разделение прпмесей с помощью бумажной хроматографии восходящим способом, используя смесь этанола, НС1 и HjO (75 20 5). Активность измеряют на у-спектрометре с кристаллом NaJ(Tl) и 128-канальном анализаторе импульсов. Аналогичный метод используют при анализе горных пород [911, 912], В активационном анализе очень часто применяют метод экстракции как самый простой и быстрый метод выделения и отделения элементов. С помощью метода экстракции произведено, например, отделение и очистка Мп с последующим у-спектрометрическим определением его в алюминии, сталях [835], уране [1205], биологических объектах [182, 649, 904, 1306], нефти [904], органических материалах [1451], трихлорметил-силане [142] (см. табл. 16). Отделение и очистку марганца проводят методами хроматографии в сочетании с экстракцией при анализах солей цинка [1319], бора [175], галлия [175] и горных пород 11317, 1386]. [c.91]

    Примечание. Если перед анализом третьей группы производилось удаление фосфат-иона при помощи соли циркония ( 18), то в исследуемом иа алюминий растворе может присутствовать небольшое количество циркония. Для его отделения растворите выделившийся осадок гидроокиси циркония в нескольких каплях 6 н. H I и к полученному кислому раствору прибавляйте по каплям раствор Na2HP04 до прекращения выделения осадка. После нагревания раствора с осадком центрифугируйте и отделите раствор от осадка Zr(HP04)2. К раствору прибавьте аммиак до слабощелочной реакции. В присутствии алюминия выделяется белый хлопьевидный осадок AIPO4. [c.90]

    После спекания тигель охлаждают на воздухе. Охлажденный спек не рекомендуется оставлять длительное время на воздухе, так как это ухудшает разделение молибдена и рения при анализе молибденитов за счет перехода окиси кальция в карбонат [376]. Остывший спек вьщелачивают водой при нагревании раствора до кипения в течение 20—60 мин. В полученном растворе (щелоке) содержатся перренат- и в небольших количествах (1—12 мкг/мл) молибдат-, вольфрамат-, ванадат-, сульфат- и другие ионы в осадке — нерастворимые соли молибдена(У1), вольфрама(У1), кремния и др., гидроокиси железа(1П), алюминия, титана(1У), меди(П), марганца(1У) и других элементов. Щелок фильтруют через бумажный фильтр, осадок па фильтре промывают горячей водой. Фильтрат при стоянии мутпеет вследствие образования осадка карбоната, который, однако, не мешает определению рения. Для предотвращения образования этого осадка рекомендуется собирать фильтрат в сосуд, содержащий небольшое количество соляной кислоты ( 1 мл). Для уменьшения содержания в фильтрате молибдат-, вольфрамат- и сульфат-ионов при выщелачивании плава в раствор добавляют соединения бария, образующего с названными ионами малорастворимые в воде соединения [133, 384, 576]. Иногда для удаления из фильтрата кальция к нему прибавляют карбонат аммония [501]. В результате всех этих процедур рений эффективно отделяется также от Са, d, Bi, Sb, Hg, Se, Te и As. [c.236]

    Нормальный потенциал индия [228, 232] приближается к нормальному потенциалу кадмия. В ряду напрян ений индий расположен очень близко к кадмию [406]. По данным Винклера [471] индий электроотрицательнее цинка и кадмия. По Тиле [450] индий находится между железом и свинцом. Даунс и Каленберг [168] заключили на основании результатов, полученных лри опытах по взаимному выделению металлов и из данных измерений потенциалов, что индий несколько более электроотрицателен, чем олово. Олово не осаждает металлический индий из растворов его солей [61, 362]. Металлический цинк полностью выделяет индий из растворов его солей [469, 470], и потому часто применяется для обогащения индием при анализе разнообразных материалов и его отделения от цинка, алюминия, железа, галлия и других элементов [3, 27, 72, 249, 377]. Соответствующие методы описаны в предыдущих разделах монографии. [c.170]

    Особенно, часто осадок бывает загрязнен Ре(П1) [327]. Осаждение сульфата бария в присутствии ионов Fe(HI) приводит к образованию соли Ba[Fe(304)2] 12НзО возможно соосаждение Fe(lll) в виде сульфата железа(1П), что приводит к занижению результатов анализа. Рекомендуется удаление Fe(III) осаждением его аммиаком, восстановлением до Fe(II) гидроксиламином, металлическим алюминием (цинком) или электролизом с ртутным катодом из солянокислой среды (1—2 а в течение 1—3 час.). Алюминий в умеренных количествах не влияет. [c.30]

    Наконец, их широко используют в химическом анализ К наиболее употребительным в анализе окислителям мож1 отнести азотную кислоту, ее соли, свободные галогены (хло бром, иод), пероксид водорода, царскую водку , перманган калия, дихромат калия, персульфат аммония, дисульфид аммони диоксид свинца. В качестве восстановителей применяют сер водород, свободные металлы (натрий, железо, цинк, олов алюминий), хлорид олова (II), иодоводород и его соли, тиосул фат натрия, оксалат натрия, щавелевую кислоту. [c.50]

    Разделение триэтаноламином N (СН2СН20Н)з. Триэтанол-амин образует с кобальтом растворимое комплексное соединение карминово-фиолетового цвета, соли никеля и меди дают растворы, окрашенные в синий цвет. Катионы ртути (1), свинца, серебра, кадмия, ртути (II), висмута, олова, железа, алю.миния, хро.ма и цинка образуют осадки различного цвета. Триэтанол-амин применяется для качественного обнаружения кобальта [747, 868], для разделения кобальта и никеля [1224], отделения железа от кобальта и никеля [954] и как групповой реагент в качественно.м анализе [276]. В последне.м случае при прибавлении 20%-ного раствора триэтаноламина к растворам, содержащим катионы алюминия, марганца, цинка, висмута, олова (II), сурьмы и железа(II), образуются осадки, нерастворимые в избытке триэтаноламина, а катионы трехвалентного хро.ма,. меди, кобальта и никеля образуют окрашенные растворимые соединения катионы ртути, свинца и четырехвалентного олова в этих условиях дают бесцветные растворимые комплексы. [c.71]


Смотреть страницы где упоминается термин Алюминий соли, анализ: [c.29]    [c.122]    [c.466]    [c.227]    [c.481]    [c.231]    [c.154]    [c.77]    [c.54]    [c.21]   
Методы анализа чистых химических реактивов (1984) -- [ c.98 , c.108 ]




ПОИСК





Смотрите так же термины и статьи:

Соли алюминия

Соли, анализ



© 2025 chem21.info Реклама на сайте