Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Возникновение мутаций — процесс не случайный

    Спонтанные изменения генетической природы организма — продуцента основаны на процессах рекомбинации генетического материала in vivo (амплификация, конъюгация, трансдукция, трансформация и пр.). Для вьщеления из природных популяций высокопродуктивных штаммов микроорганизмов используют методы селекции, т. е. направленного отбора организмов со скачкообразным изменением геномов. Методы слепого многоступенчатого отбора случайных мутаций чрезвычайно длительны и могут занимать целые годы. Для возникновения мутаций интересующий ген должен удвоиться 10 —10 раз. Более эффективен метод искусственного повреждения генома. Таким методом является индуцированный мутагенез, основанный на использовании мутагенного действия ряда химических соединений (гидроксиламин, нит-розамины, азотистая кислота, бромурацил, 2-аминопурин, алки-лирующие агенты и др.), рентгеновских и ультрафиолетовых лучей. Мутагены вызывают замены и делеции оснований в составе ДНК, а также индуцируют мутации, приводящие к сдвигу рамки считывания информации. [c.33]


    Мы уже описывали геннЫ е мутации как случайные ошибки копирования, происходящие во время воспроизведения гена, одна ко, Как показывают данные о действии генов-мутаторов, существует и другой аспект мутационного процесса. Возникновение новой му- [c.51]

    Возникновение мутаций — процесс не случайный [c.347]

    Во-первых, наблюдаемую долю гетерозиготности можно полностью объяснить аллельной изменчивостью, которая совершенно не влияет на приспособленность. Каждый локус способен мутировать и давать огромное число форм, около на цистрон обычной длины. Конечно, очень большое, но не известное нам число замещений, вероятно, приводит к таким изменениям фермента, в результате которых активность его снижается или теряется вовсе эти мутации будут элиминироваться отбором. Однако многие замещения могут оказаться нейтральными, и большая их часть будет утрачена в течение нескольких поколений после их появления. Некоторые из этих мутаций, хотя они в конце концов и элиминируются, могут временно достигнуть промежуточных генных частот благодаря случайному дрейфу. Еще некоторые, примерно гN новых нейтральных мутаций, в конечном счете закрепляются в популяции, и часть из них может встречаться с промежуточной или высокой частотой. В любой момент большинство локусов будет представлено только одним аллелем, но все уменьшающиеся доли локусов будут представлены 2, 3, 4,. .., п аллелями с варьирующими частотами. После того как процесс продолжался в течение некоторого времени, достигается устойчивое состояние своего рода динамического равновесия между введением новых мутаций, случайным увеличением числа этих мутаций с помощью дрейфа и случайной потерей изменчивости. Мы ожидаем, что чем выше частота возникновения мутаций и чем больше величина популяции, тем больше нейтральных изменений будет накапливаться, не теряясь в дальнейшем. Фактически в устойчивом состоянии гетерозиготность Н будет [c.212]

    Хотя в ДНХ любой клетки человека под влиянием тепловой энергии происходят ежедневно тысячи случайных изменений, за год в каждой клетке накапливается (если только вообще накапливается) лишь очень небольшое число стабильных изменений нуклеотидной последовательности ДНК. Мы знаем теперь, что среди множества случайных замен оснований в ДНК лишь одна на тысячу приводит к возникновению мутации, все же остальные повреждения очень эффективно ликвидируются в процессе репарации ДНК. Все репарационные механизмы основаны на том, что в клетке имеются две копии генетической информации - по одной в каждой из двух цепей молекулы ДНК. Если нуклеотидная последовательность одной из цепей случайно оказывается измененной, информация не утрачивается, поскольку вторая ее копия хранится в нуклеотидной последовательности другой цепи ДНК. Из схемы на рис. 5-33 видно, что основной путь репарации ДНК включает три этапа. [c.281]


    В предыдущем разделе мы рассмотрели два весьма различных примера, которые иллюстрируют данное ноложение в общем виде развитие рака можно описать как процесс, в ходе которого первоначальная популяция незначительно измененных клеток, потомков единственной мутантной клетки-предшественницы, движется от плохого к худшему , проходя через последовательные циклы мутаций и естественного отбора. Элемент случайности в этой эволюции очень велик, поэтому обычно она охватывает многие годы большинство людей умирает от других заболеваний до того, как у них успевает развиться рак. Для понимания причин его возникновения необходимо выяснить факторы, которые могут ускорить этот процесс. [c.455]

    До сих пор мы не касались вопроса о роли спонтанных мутаций, т. е. изменений последовательности нуклеотидов в процессе возникновения кода. Случайные изменения последовательности нуклеотидов с точки зрения передачи и запоминания информации являются помехами и, следовательно, вопрос сводится к исследованию помехоустойчивости процесса. Этот вопрос рассматривался в ряде работ [П63, 13, 14, 15] и в несколько упрощенном варианте в [26]. Результаты работ в главном совпадают мы в изложении будем следовать [26]. [c.36]

    Молекулярные часы эволюции и мутации. Как уже отмечалось, существование эволюционных часов можно объяснить в том случае, если накопление мутаций зависит от времени и не зависит от вида организма и если замены фиксируются в результате случайных процессов. Из разд. 5.1.3 мы узнали, что частоты возникновения некоторых мутаций человека для мужских половых клеток выше, чем для женских, что частоты возникновения ряда мутаций увеличиваются с возрастом отцов и что многие мутации, вероятно, связаны с репликацией ДНК. Существование сильных различий в продолжительности поколений разных животных делает гипотезу о простой зависимости накопления мутаций от времени весьма маловероятной. [c.25]

    Мутации идут в природе, как мы теперь знаем, в различных направлениях, и возникновение каждой из них у того или иного организма — событие случайное. Но в то же время мутационный процесс в целом подчинен определенной закономерности, состоящей в том, что характер возможных мутаций у любого организма определен генетической системой вида (рода). Каждый генотип может мутировать в разных, но далеко не в любых направлениях. В процессе эволюции видовых генетических систем их спектры мутаций получали определенные очертания, те или иные границы. [c.213]

    Подобные наблюдения нетрудно объяснить. Рассмотрим процесс возникновения в ходе эволюции новой анатомической особенности, скажем удлиненного клюва. Случайная мутация изменяет аминокислотную последовательность белка и, следовательно, его биологическую активность. Измененный белок может повлиять на клетки, ответственные за образование клюва таким образом, что в результате получится более длинный клюв. Но мутация должна быть совместима с развитием остальных частей организма - лишь в этом случае она будет подхвачена естественным отбором. Удлинение клюва вряд ли окажется выгодным, если оно сочетается с утерей языка или отсутствием ушей. Такие катастрофические последствия более вероятны в случае мутаций, затрагивающих ранние стадии индивидуального развития, чем в случае мутаций, влияющих на его поздние этапы. Ранние эмбриональные клетки подобны картам в основании карточного домика - от них зависит слишком многое, и даже незначительное изменение их свойств скорее всего приведет к печальным последствиям. Ранние стадии индивидуального развития оказались замороженными - так же точно, как в биохимической организации клеток заморожены генетический код и механизмы биосинтеза белка. В отличие от этого клетки, образующиеся на последних стадиях развития, имеют больше возможностей для изменений. Вероятно, именно по этой причине на ранних стадиях развития эмбрионы разных видов столь часто бывают похожи друг на друга и в процессе индивидуального развития, видимо, нередко повторяют пройденные ими этапы эволюции. [c.48]

    Уменьшение изменчивости [124]. Пример с островными популяциями показывает, что какой-либо аллель может быть случайно потерян из популяции в этом случае происходит фиксация альтернативного аллеля. Как видно из табл. 6.26 и уравнения (6.19), в популяции конечного размера этот процесс происходит с определенной, хотя обычно и низкой, частотой. Однако, если фиксация уже произошла, обратный процесс невозможен. Вероятность фиксации (т.е. того, что q станет равным О или 1) с увеличением числа поколений стремится к 1. Таким образом, по прошествии длительного времени группа популяций рано или поздно станет гомозиготной даже при отсутствии отбора (если процесс не нарушается миграцией и возникновением мутаций). Это явление называется уменьшением изменчивости (de ay of variability). [c.368]

    Со стохастической гипотезой дело обстоит гораздо хуже. По своей природе она предсказывает не отдельные события, а только распределения и средние. В популяционно-генетической теории, которая формально во многом сходна с теорией диффузионных процессов, распределения и их моменты оказываются в сильной зависимости от отношения средней тенденции к дисперсии, оценивающей разброс, вызванный случайными факторами. Поскольку дисперсия, которую обычно рассматривают, возникает из конечности величины популяции, она пропорциональна 1/Л/. Таким образом, в стохастической гипотезе снова и снова появляются такие количественные показатели, как Ыт и N5 — произведения величины популяции и детерминистических сил мутационного процесса, миграции или отбора. Детерминистические параметры р, т и 5 очень малы, но мы не знаем, насколько они малы. Мы даже не знаем порядка этих величин, хотя частота мутирования для определенных классов аллелей нам известна более точно, чем величина миграции или отбора. Частоту возникновения мутаций мы можем измерить в лаборатории при заданных условиях, тогда как миграция и отбор — параметры природных популяций, особенно миграция, которая вне природной обстановки не имеет смысла. Равным образом N очень велика, и ее можно измерить только тавтологически , т. е. используя те самые генетические переменные, которые она должна предсказывать, и некоторые допущения относительно других количественных показателей. Даже такие тавтологические оценки N связаны с вычислением величины, обратной величине разности между очень малыми числами, которые сами имеют огромные экспериментальные ошибки (Добржанский и Райт, 1941 Райт, Добржанский и Хованиц, 1942). Кроме того, предсказания стохастической гипотезы сильно зависят от величины Мт, Мз и Л р. Самое большее, на что способна такая гипотеза, — это предупредить нас, что мы [c.274]


    Мутационный процесс, характеризующийся средней частотой возникновения мутаций и их качественным спектром, в силу своей случайной ненанравленной ириро- [c.18]

    Выше мы рассматривали генные мутации как случайные ошибки копирования, происходящие во время воспроизведения гена, и это, несомненно, само по себе верно. Однако, как показывают данные о действии генов-мутаторов, существует и другой аспект мутационного процесса. Возникновение новой мутационной изменчивости, которая имеет важное значение для долговременного успеха данного вида в эволюции, может быть не целиком предоставлено воле случая, а инициироваться генами-мутаторами, Частота возникновения мутаций у данного вида частично может быть одним из генотипически контролируемых компонентов всей его генетической системы. [c.57]

    Начало периода мысли знаменуется появлением около 30 тысяч лет тому назад из "пучка" неандертальцев человека, морфологически почти не отличающегося от ньше живущих людей. В его деятельности впервые в истории Земли обнаруживаются признаки индивидуальной духовной жизни и отражается представление о людском сообществе как о некоей целостности. Возникшая у нашего пращура неведомая ранее рефлексирующая мысль проявилась в зарождении религиозной духовной силы, сплотившей людей и придавшей смысл их существованию, в появлении искусства, морали, права. Таким образом, психогенез, сменивший период жизни - биогенез, привел к появлению наряду с существовавшим уже интуитивным сознанием также рефлексирующего мышления, т.е. разума. Именно он, а не труд создал человека. Совершенствование духовной жизни человечества представляло собой процесс становления новой эволюционной фазы биосферы - фазы ноогенеза. П. Тейяр де Шарден пишет ... Если изучение прошлого и позволяет нам сделать некоторую оценку ресурсов, которыми обладает организованная материя в рассеянном состоянии, то мы еще не имеем никакого понятия о возможной величине "ноосферной" мощности. Резонанс человеческих колебаний в миллионы раз Целый покров сознания, одновременно давящий на будущность Коллективный и суммированный продукт миллионов лет мышления ... Попытались ли мы когда-либо представить, что представляют собой эти величины [1. С. 224]. Сознание, которое, с его точки зрения, все время эволюционировало в формирующейся материи по восходящей линии, достигает в ноосфере своего апогея - состояния гармонии тройного единства - структуры, механизма и развития. Единство структуры заключается в исчезновении границ между естественным и искусственным. Если все то, что создано человеком и, следовательно, считается искусственным, не отбрасывается эволюционным потоком, то оно становится гоминизированным, естественным. Единство механизма эволюционного процесса Тейяр де Шарден видит в сходстве случайных мутаций и человеческих изобретений. "Ибо в конце концов, - полагает он, - если действительно наши "искусственные" сооружения не что иное, как закономерное продолжение нашего филогенеза, то столь же закономерно и изобретение... может рассматриваться как осознанное продолжение скрытого механизма, регулирующего произрастание всякой новой формы на стволе жизни.. .. Дух поисков и завоеваний - это постоянная душа эволюции" [1. С. 178-179]. Развитие - это совершенствование и распространение сознания. Человек в этом эволюционном процессе, по его мнению, представляет "уходящую ввысь вершину великого биологического синтеза. Человек, и только он один, - последний по времени возникновения, самый свежий, самый сложный, самый радужный, многоцветный из последовательных пластов жизни" [1. С. 179]. [c.33]

    Другая грань конструктивной роли необратимых процессов я резкого различия между порядком и случайностью открывается перед нами, если мы рассмотрим в качестве примера механизм биологической эволюции. Со времен Дарвина принято считать маловероятным, что биосфера является тем статическим, гармонично детерминированным миром, который некогда открылся Кеплеру, созерцавшему звездное небо. Биологические виды и даже предбиологические макромолекулярные соединения [1.11, 12] являются самоорганизующимися системами. Они непрестанно становятся , т. е. пребывают в состоянии возникновения, которое существенно зависит от случайных событий. Случайно и независимо от направления эволюции создается обширный банк наследственных генетических вариаций. Этот банк служит бесценной сырьевой базой для эволюции. Именно в нем эволюция находит благоприятные вариации, частота которых в популяции последовательно возрастает и стабилизуется точными, однозначно определенными законами передачи наследственных признаков. Нетрудно видеть, что отличительная особенность эволюционной теории, заведомо не имевшая аналогов в физических науках в те времена, когда создавалась эволюционная теория, придает случайным событиям необычайно важное значение. Мутации играют роль случайного двигателя прогресса. Однако мутации приводят и к гораздо более важным и далеко идущим последствиям, поскольку именно такие случайные события наугад выбирают один из нескольких возможных путей эволюции. По общепринятому ныне мнению исход эволюции биосферы не определен однозначно. Если бы жизнь на какой-нибудь другой планете развивалась в тех же условиях, в каких происходила эволюция живого на Земле, то мы вполне готовы к тому, что формы жизни могли бы быть совершенно иными (не исключено даже, что в основе их лежала бы совершенно другая химия). По общему мнению при надлежащих условиях возникновение жизни неизбежно. В этом смысле жизнь — явление физическое, материальное, детерминированное. Однако из сказанного отнюдь не следует, что жизнь предсказуема. Наоборот, на более современном яэыке можно было бы сказать, что в процессе развития жизнь непрестанно осуществляет случайный выбор одного из многих (быть может, даже бесконечно многих) возможных сценариев. Предсказать достоверно, какого именно сценария будет [c.15]

    Влияние мутаций на частоту врожденных дефектов оценить трудно. Очень немногие из таких дефектов являются явно моногенными. Но вот влияние главных генов на некоторые из них не исключено. Лишь немногие врожденные дефекты полностью обязаны своим возникновением окружающей среде. Поразительные различия в популяционных частотах индивидов с дефектами нервной трубки могут объясняться невыявленными средовыми воздействиями. Для большинства врожденных дефектов предполагается взаимодействие между множественными генетическими и пока неизвестными средовыми факторами. Эффекты мутаций должны зависеть от природы лежащей в основе заболеваний генетической изменчивости. Если значительная часть генетической изменчивости, предрасполагающей к врожденным дефектам, обусловлена системами генетического полиморфизма, поддерживаемыми отбором, мутации должны иметь небольшое влияние или вообще не влиять на их частоты. Продолжая анализировать этот вопрос, можно предположить, что, например, врожденные пороки сердца обусловлены случайными или стохастическими процессами, не испытывающими влияния ни генетических, ни средовых факторов, поскольку конкордантность по таким сложным врожденным дефектам органогенеза у идентичных близнецов низкая [2348]. [c.258]

    Из всех этих наблюдений следует, что в трех случаях, когда виды высокодифференцированы по определенным аллелям, по крайней мере у одного из них наблюдается низкий уровень полиморфизма по генам, которые характеризуют другой вид. Следовательно, существует потенциальная возможность обмена генами между видами, не зависящая от случайного возникновения новой изменчивости за счет мутаций. Иными словами, подавляющее большинство генетических различий между близкородственными видами заложено в существующем внутривидовом полиморфизме. Конечно, это обобщение теряет силу по мере того, как виды дивергируют все больше и больше в процессе филетической эволюции. Мы, например, не находим общих аллелей у видов дрозофилы, принадлежащих к разным видовым группам, таким, как D. melanogaster и D. pseudoobs ura. Однако наши данные говорят о том, что для этой большей дифференциации необходим лишь эпизодический ввод мутационных новшеств и что на ранних стадиях филетической дивергенции используется уже существующий спектр генотипической изменчивости. [c.186]

    Хотя, если следовать адаптивной теории, частота замещения аминокислот в процессе эволюции подозрительно высока, особенно при очень большом общем числе генов эта частота хорошо согласуется со случайным неадаптивным замещением. В состоянии устойчивого равновесия частота замещения аминокислот должна быть равна частоте возникновения новых мутаций, умноженной на вероятность, с которой новые мутации в конечном счете закрепляются в популяции. Независимо от типа мутаций их общая частота на локус должна быть равна частоте на гамету 1, умноженной на общее число гамет 2Л. Более того, для неотбираемых мутаций вероятность закрепления вновь возникшей мутации равна Поэтому частота возникновения новых аллелей, которым суждено закрепиться, должна быть [c.227]

    Мутации ведут к увеличению наследственной изменчивости популяции. Данных, свидетельствующих об адаптивности мутационного процесса, не существует. Направление мутирования случайно и не предсказуемо. Благодаря мутациям и новым комбинациям генов просто создается сырье , с которым далее предстоит работать естественному отбору. Возникновение наследственных изменений есть часть, и только часть, механизма эволюции. Происхождение видов — это другая и гораздо более сложная проблема. Достаточно полное изложение этого предмета читатель может найти в книге Добжанского Geneti s of the evolutionary pro ess (1970). [c.344]


Смотреть страницы где упоминается термин Возникновение мутаций — процесс не случайный: [c.38]    [c.311]    [c.265]   
Смотреть главы в:

Эволюция без отбора Автоэволюция формы и функции -> Возникновение мутаций — процесс не случайный

Эволюция без отбора -> Возникновение мутаций — процесс не случайный




ПОИСК





Смотрите так же термины и статьи:

Случайные процессы

возникновение



© 2024 chem21.info Реклама на сайте