Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Среды и буферные растворы

    При титровании с использованием буферных растворов оптимальное значение pH среды определяется устойчивостью комплексного соединения и это значение, как правило, тем ниже, чем более устойчив комплексонат (чем больше степень окисления металла, образующ,его его). Для прогнозирования возможности кондуктометрического титрования катионов металлов (например, для М) раствором ЭДТА рекомендуется использовать следующие данные (р — константа устойчивости комплекса состава [c.110]


    РАБОТА № 16. ИНДИКАТОРЫ. ОПРЕДЕЛЕНИЕ pH СРЕДЫ, БУФЕРНЫЕ РАСТВОРЫ [c.79]

    Среда буферного раствора, например ацетатного, определяется константой диссоциации слабой кислоты и концентрацией ее соли  [c.329]

    Метод основан на том, что анионные синтетические моющие вещества (детергенты) образуют с метиленовой синей комплексные соединения, растворимые в хлороформе с образованием синих растворов. Сама метиленовая синяя в хлороформе не растворяется. В описываемом варианте метода экстракцию указанного комплексного соединения хлороформом проводят сначала в щелочной среде (буферный раствор, pH 10), а затем соединенные хлороформные экстракты промывают кислым раствором метиленовой синей. Таким двойным экстрагированием устраняется мешающее действие хлоридов, нитратов, роданидов и белков. [c.269]

    Работа № 20. Индикаторы. Определение pH среды. Буферные растворы [c.5]

    Навеску анализируемого л-фенилендиамина заранее растворяют в теплой воде, охлаждают раствор и устанавливают точный объем. Из практикума по органической химии учащиеся должны помнить, что для процесса сочетания большое значение имеет реакция среды. Сочетание с аминами ведут в среде буферного раствора раствор л-фенилендиамина переносят пипеткой в стакан для титрования, добавляют уксусную кислоту, уксуснокислый натрий и лед. [c.196]

    Выполнение реакции. Обнаружение мочевины и гуанидина проводят в среде буферного раствора при pH 9—10. К исследуемому раствору прибавляют несколько капель 2%-ного раствора соды, затем несколько капель 2%-ного раствора гипохлорита натрия и, наконец, несколько миллилитров 0,3%-ного водного раствора тимола. Появляется золотисто-желтая окраска. [c.556]

    К витаминам группы Е относятся токоферолы (а-, р-, у-, 6-, е- и др.), которые также способны окисляться полярографически, образуя в области положительных потенциалов анодную волну. Эта волна делает возможным определение их содержания в среде буферного раствора с pH = 4. Установлено, что на высоту анодной волны витамина Е влияет наличие жиров холестерина. [c.198]

    Буферные растворы применяют как стандартные для определения pH и для поддержания необходимой кислотности среды. Многие биологические системы являются буферными. Например, кровь [c.130]

    Буферные растворы имеют значение для некоторых методов определения pH. Наконец, можно отметить, что буферные растворы часто применяются в качестве среды с постоянным значением pH при экспериментальной разработке ряда вопросов химии, биохимии и др. [c.300]


    При разбавлении концентрированных окрашенных растворов электролитов изменяется степень диссоциации, что также вызывает отклонения от закона Бэра. В таких случаях следует разбавлять раствор не чистым растворителем, а раствором индиферентного (в отношении оптической плотности) вещества, компенсирующего убыль концентрации основного реагента при разбавлении. Изменения оптической плотности могут быть связаны также с изменением кислотности среды, поэтому часто измерения проводятся в буферных растворах. Если раствор пропускает свет в соответствии с законом Бэра, то на графике зависимости оптической плотности от концентрации получается прямая линия, идущая от начала координат (рис. 161). Отклонения от прямолинейности однако не означают, что система непригодна для коло-риметрического анализа. Полученная по экспериментальным данным зависимость /) = / (с) в виде кривой может далее служить калибровочным графиком. При помощи этой кривой по оптической плотности раствора может быть определена концентрация данного компонента в растворе. [c.374]

    Соотношения (11.5) — (11.7) показывают, что степень протекания реакции зависит от pH раствора. Влияние кислотности раствора особенно заметно при титровании катионов, образующих сравнительно малоустойчивые комплексы (Мд ", a и др.) их можно оттитровать лишь в щелочной среде. Многие катионы титруются в аммиачном буферном растворе. Катионы, образующие очень устойчивые комплексы, как, например, Ре , могут быть оттитрованы в довольно кислом растворе. [c.236]

    Буферные растворы имеют громадное значение при работе очистных сооружений бытовых стоков, так как комплекс микроорганизмов, минерализующих органическое вещество, лучше развивается при нейтральной реакции среды. Всякое отклонение в кислую или щелочную сторону тормозит процесс жизнедеятельности микрофлоры, а следствием этого является ухудшение работы очистных сооружений. [c.57]

    Для обеспечения роста микроорганизмов в среде должны быть неорганические фосфаты в виде кислых солей КН2РО4 и К2НРО4. Они же обеспечивают определенное значение pH среды (буферность раствора). В клетках живых организмов фосфор присутствует в форме фосфатов, главным образом фосфатов сахаров в нуклеотидах и нуклеиновых кислотах. Поскольку к этим соединениям относятся такие важные составные части клетки, как ДНК, РНК и АТФ, то очевидно, что фосфаты играют важную роль в жизнедеятельности клетки. Источником фосфатов в естественных средах (как питательный бульон) служат нуклеиновые кислоты. [c.284]

    Применение, В гистохимии для выявления цинка в островках Лангерганса и в предстательной железе [1] для повышения специфичности метода добавляют хлорид или карбонат аммония [2] или вводят в среду буферный раствор Велли — Джибсона, который предотвращает образование комплекса дитизона с любым катионом, кроме цинка [3]. [c.142]

    Азосочетание с аминами проводят обычно в среде буферного раствора (СНзСООН- -СНзСООМа), образующегося при смешении минеральной кислоты, содержащейся в титрованном растворе диазосоединения, и большого избытка ацетата натрия, который прибавляют к раствору анализируемой азосоставляющей. Азосочетание с нафтолами, нафтолсульфокислотами и т. п. обычно осуществляется в слабокислой, слабощелочной или содово-щелочной средах (уксусная кислота совместно с ацетатом натрия, водный раствор соды или бикарбоната натрия). [c.194]

    Среди многих типов пенообразователей для получения карбамидных пенопластов пригодны только те, которые активны как в нейтральной, так и в кислой среде (pH=2—3). Напротив, не пригодны пенообразователи, разлагающиеся в кислой среде или уменьшающие кислотность среды (например, мыла). Применение эмульгаторов, активных в нейтральной среде и неактивных в кислой, способствует получению пен, коалисцирующих сразу же при под-кислении смолы. Эта особенность пенообразователей для карбамидных олигомеров иногда вынуледает вводить в композиции регуляторы pH среды — буферные растворы [9, 16, 92]. [c.268]

    Для определения триамцинолона автор предлагает буферную смесь (pH = 1,5—2,5) с примесью 50%)-ного спирта. Эфиры стероидов можно также определять в среде буферного раствора цитрата натрия с примесью 50%-ного спирта. [c.190]

    В. Малик и К. Синг разработали точный метод количественного определения аскорбиновой кислоты в поливитаминных препаратах, основанный на экстракции витамина С метафосфорной кислотой и амперометрическом титровании при напряжении +0,2 в раствором пентаак-воферрицианида в среде буферного раствора Бриттона — Робинсона (рН=5,2). [c.197]

    И менее точен, но зато значительно проще, чем метод Тизелиуса. На полоску фильтровальной бумаги, увлажненной буферным раствором, наносят в форме поперечной черточки или пятна исследуемый биоколлоидный раствор. Полоску помещают в горизонтальном положении в закрытое пространство, а концы ее погружают в буферный раствор, где находятся электроды. После подключения источника электродвижущей силы электрическое поле вызывает движение компонентов, находящихся в черточке или пятне, вдоль полоски. Скорость перемещения компонентов зависит от их электрофоретической подвижности. Через некоторое время электрофорез прекращают, бумагу высушивают и погружают в раствор красителя, который на биоколлоиде адсорбируется сильнее, чем на бумаге. По полученному изображению видно положение компонентов в конце электрофореза, и можно судить об их числе и электрофоретической подвижности. Из сказанного выше видно, что бумага играет роль пористой среды, препятствующей растеканию компонентов и их конвективному перемешиванию со средой, в которой протекает электрофорез . В последнее время вместо бумаги используют гелеобразные среды (агар-агар, желатин), которые дают более резко очерченные зоны. Электрофорез на бумаге (и в других средах) сопровождается побочными явлениями, такими, например, как перенос вещества, вызываемый миграцией испаряющегося буфера (Машбёф, Ребейрот и др., 1953 г.). Кроме того, было установлено (Шелудко, Константинов, Цветанов, 1959 г.), что, например, в желатине не только сама электрофоретическая подвижность некоторых красителей меньше, чем в воде или водных растворах, но и соотношение между подвижностями компонентов в этом случае совсем иное. Эти особенности метода еще не до конца изучены. Поскольку рассматриваемый метод имеет важное практическое значение, различные проблемы создаваемой в настоящее время теории электрофореза в пористых и гелеобразных средах п разнообразные методы его использования являются предметом многих научных трудов. Некоторое представление о них читатель может получить из монографии [6 1. [c.158]


    Определение малых содержаний АЬОз (экстракционные кислоты, известняки и др.). При малых содержаниях AI2O3 навеску увеличивают до 5—10 г. После операции растворения и отбора аликвотной части, содержащей 0,04—0,09 мг AI2O3, в колбу вместимостью 100 мл (см. выше) туда же последовательно прибавляют 1 мл Н3РО4, 2 мл 0,1 % аскорбиновой кислоты, дистиллированную воду (примерно до 50 мл). 1—2 капли индикатора тропеолина 00 и водного раствора аммиака или НС1 (в зависимости от среды раствора) до желтой окраски раствора, 10 мл 0,1 % раствора хромазурола S, 10 мл ацетатного буферного раствора и дистиллированную воду до метки. Дальнейшие операции проводят, как описано выше. [c.230]

    Ионы Zn(II) необратимо восстанавливаются из нейтральных и щелочных (иапример, из аммиачных буферных) растворов, что затрудняет его определение методами переменнотоковой полярографии. При подкисленин растворов степень обратимости возрастает и на фоне ряда кислот процесс восстановления протекает квазиобратимо, что значительно улучшает условия определения ионов 2п(П). В то же время в сильнокислых растворах потенциалы восстановления ионов цинка и водорода существенно сближаются, так что раздельное определение их методом постояннотоковой и дифференциальной импульсной полярографии делается невозможным. Поскольку ионы водорода восстанавливаются на ртути существенно необратимо, то при использовании метода синусоидальной перемениотоковой полярографии мешающее действие ионов водорода устраняется. В то же время в кислых средах необратимо происходит и восстановление кислорода, так что его сигнал на полярограмме не проявляется. В связи с этим применение переменнотоковой полярографии позволяет избежать продолжительной операции его удаления, упрощает конструкцию ячейки и оснащение рабочего места в полярографической лаборатории. [c.299]

    Сущность работы. Определение основано на титровании раствора соли никеля стандартным раствором ЭДТА с индикатором -мурексидом в среде аммиачного буферного раствора. [c.94]

    Сущность работы. Определение основано на титровании свинца стандартным раствором ЭДТА в среде ацетатного буферного раствора в присутствии ксиленолового оранжевого. [c.95]

    БУФЕРНЫЕ РАСТВОРЫ — растворы с определенной концентрацией водородных ионов, смесь слабой кислоты и ее соли (напр., СНзСООН и Ha OONa) или слабого основания и его соли (напр., NH4OH и NH4 I). Величина pH Б. р. мало изменяется от добавления небольшого количества сильной кислоты или щелочи и разбавления раствора, что дает возможность проводить химические процессы при неизменных условиях среды. Б. р. широко используются в химической практике, они играют огромную роль в процессах жизнедеятельности. Многие из жизненных процессов могут протекать только при определенном значении pH с незначительными колебаниями постоянство pH поддерживается в живых организмах природными Б. р. (напр., в крови есть смесь карбонатов и фосфатов, исполняющая роль Б. р.). Б. р. широко используются в аналитической химии и на производстве при разделении редких элементов, обогащении сырья (Дотацией, когда осаждение, разделение, экстракция, ионный обмен и другие процессы возможны лишь в в определенных пределах pH растворов. [c.50]

    При определении N 2+ и Са + использована реакция комплексообразования. При кондуктометрическом титровании, основанном на комплексообразовании, в качестве титранта чаще всего выбирают раствор двунатриевой соли этилендиаминтетрауксус-кой кислоты (ЭДТА, сокращенная запись ЫагНгУ). В зависимости от pH среды при титровании могут образовываться средние и протонированные комплексонаты, а также различные продукты диссоциации этилендиаминтетрауксусной кислоты. Несмотря на сложный состав раствора на кривых титрования в буферном растворе или в отсутствие его имеется четко выраженный излом. [c.109]


Смотреть страницы где упоминается термин Среды и буферные растворы: [c.309]    [c.144]    [c.153]    [c.109]    [c.110]    [c.134]    [c.302]    [c.73]    [c.100]    [c.178]    [c.57]    [c.110]    [c.134]   
Смотреть главы в:

Вирусология Методы -> Среды и буферные растворы




ПОИСК





Смотрите так же термины и статьи:

Буферная

Буферные растворы



© 2025 chem21.info Реклама на сайте