Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Физическое картирование генома

    В рекомбинантных ДНК, поддерживаемых в таких системах, часто возникают внутренние делеции некоторых, например, повторяющихся последовательностей. Кроме того, при введении рекомбинантных ДНК в клетки дрожжей иногда имеет место проникновение в одну клетку нескольких молекул вектора со вставками. В итоге отдельные клоны дрожжевых клеток могут содержать несколько несцепленных друг с другом молекул рекомбинантных ДНК, а рекомбинация между ними вообще может приводить к образованию химерных молекул, которые являются одной из главных проблем, возникающих при использовании YA 40-60% клонов могут содержать химерные молекулы. Все это очень затрудняет физическое картирование генов в хромосомах исследуемых объектов. [c.92]


    Участки ДНК, по которым происходит расщепление той или иной рестрикта-зой, называют сайтами рестрикции. Поскольку эндонуклеазы рестрикции используются не только для подготовки ДНК к секвенированию, но и для других целей, в частности для генной инженерии (см. 7.11), распределение сайтов рестрикции вдоль молекулы ДНК является важной характеристикой ДНК. Установление взаимного расположения этих сайтов называют физическим картированием ДНК, а саму схему такого распределения — физической картой ДНК.  [c.276]

    Физическое картирование бактериальных генов методом прерванной конъюгации [c.236]

    В ряде случаев для секвенирования или анализа больших участков эукариотических генов необходимо иметь набор делеций, которые начинаются в общей точке и простираются в анализируемую область на разную длину. Это позволяет не проводить физическое картирование и секвенировать ее с использованием общего [c.264]

    Составьте план эксперимента по физическому картированию искомого гена, если известно, на какой хромосоме он находится. [c.312]

    В настоящее время, как уже отмечалось, известны 143 прототипа рестриктаз. Таким образом, имеется возможность расщеплять ДНК по 143 различающимся по структуре участкам. В конкретных экспериментах весь этот набор конечно не используется. Вместе с тем успешное решение таких задач, как физическое картирование различных ДНК, выделение их фрагментов, определение нуклеотидной последовательности, разрыв ДНК в желаемом месте (например, сразу за структурной частью гена) во многом зависит от возможностей, представленных существующими вариантами субстратной специфичности рестриктаз. Учитывая большое структурное разнообразие ДНК очевидно, что имеющийся набор этих ферментов еще далек от удовлетворения всех нужд научных исследований. Поэтому поиск рестриктаз, обладающих способностью специфически расщеплять ДНК в ранее недоступных для этого местах, не теряет [c.65]

    Для генетического анализа какого-либо вида организмов необходимо выявление мутантов с определенными физиологическими дефектами (отличиями от особей, принятых за дикий тип). До недавнего времени такие мутанты получали только в результате статистического (случайного, ненаправленного, общего) мутагенеза популяции организмов с последующей селекцией или отбором мутантов, обладающих характерным фенотипом. Измененный ген в выделенных мутантах может быть затем локализован на геноме путем комплементационного или рекомбинационного анализа с другими мутантами или методами физического картирования. Появление методов генетической инженерии позволило с помощью клонирования в молекулярных векторах извлекать отдельные гены даже из очень больших и сложно организованных геномов. Для клонированных генов может быть расшифрована последовательность нуклеотидов, а на ее основе — аминокислотная последовательность кодируемого белка. Более того, можно клонировать, а затем сравнивать последовательности гена (белка) дикого типа и мутантных форм. Исходя из полученной информации можно определить, какие изменения структуры гена (белка) приводят к тому или иному изменению фенотипа организма. [c.171]


    ДНК с известными генетически картированными делециями и добавками (рис. 7.11). Такой гетеродуплексный анализ позволяет построить физическую карту параллельно с генетической картой на рис. 7.7. Поскольку известна общая длина молекулы ДНК X (она составляет около 49 ООО н. п.), можно определить примерную величину каждого гена. [c.213]

    Картирование генома подразумевает создание систематизированной библиотеки клонов, которая полностью представляет геном (или определенную его часть) и содержит набор генетических маркеров, достаточный, чтобы строить физическую и генетическую карты. По ходу исследований мы постепенно приближаемся к истинной структуре. В идеале карты, полученные разными способами, должны быть идентичными. Изучение структуры генома не требует обязательного построения рестрикционной карты, однако некоторые способы картирования автоматически приводят к ее получению. [c.31]

    Недостаток больших родословных для рецессивно наследуемых признаков, конечно, ограничивает применение метода геномной дактилоскопии, но не исключает полезность его использования для анализа рецессивных болезней. Если в родословной имеются близкородственные браки, возможно также картирование по гомозиготности [27]. Суть этого метода в следующем если оба родственных индивида несут редкий рецессивный ген то вероятнее всего они унаследовали его от единого предка [28]. Если индивиды находятся в достаточно далеком родстве, то общие для них последовательности будут составлять лишь малую долю генома. К тому же поскольку аллельные частоты фрагментов, образующих полосы в отпечатках (особенно боль-. ших фрагментов), очень малы, то маловероятно, что в геноме родственников эти фрагменты совпадут, если они произошли от разных предков. Если при близкородственном скрещивании больные дети имеют общую для их геномных отпечатков полосу в удвоенном количестве, а здоровые дети наследуют одинарную дозу или вовсе не имеют этой полосы, то тем самым подтверждается гипотеза о физическом сцеплении между участком, ответственным за признак, и данной полосой. Условившись об аллелизме, можно подсчитать шансы на сцепление, но, как уже отмечалось, для подтверждения или опровержения наличия сцепления фрагмент необходимо клонировать. [c.206]

    Метод прерванной конъюгации удобен при физическом картировании генов, довольно удаленных друг от друга, но не может использоваться при картировании маркеров, находящихся на близком расстоянии. Такие локусы картируют посредством рекомбинационного анализа, основанного на тех же принципах, которые были использованы при постановке трехфакторных скреидиваний (гл. 5 и 7). [c.246]

    Рестриктазы II типа очень широко испатьзуются в методах генной инженерии для физического картирования ДНК и для выделения участков ДНК в составе того или иного рестрикционного фрагмента. Поэтому в течение ряда лет велся широкий поиск рестриктаз [c.130]

    Рестриктазы II типа очень широко испачьзуются в методах генной инженерии для физического картирования ДНК и для выделения участков ДНК в составе того или иного рестрикционного фрагмента. Поэтому в течение ряда лет велся широкий поиск рестриктаз II типа с разной специфичностью (разными сайтами рестрикции). В результате сейчас известно более 350 рестриктаз разных бакте- [c.130]

    Искусственные дрожжевые хромосомы (YA ) предназначены для клонирования больших фрагментов ДНК (100 т. п. н.), которые затем поддерживаются в дрожжевой клетке как отдельные хромосомы. УАС-система чрезвычайно стабильна. С ее помощью проводили физическое картирование геномной ДНК человека и анализ больших транскриптонов, создавали геномные библиотеки, содержащие ДНК индивидуальных хромосом человека. YA -вектор напоминает хромосому, поскольку он содержит последовательность, функционирующую как сайт инициации репликации ДНК (автономно реплицирующуюся последовательность), сегмент центромерной области дрожжевой хромосомы и последовательности, образующиеся на обоих концах при линеаризации ДНК и действующие как теломеры, обеспечивающие стабильность хромосомы (рис. 7.3). При встраивании чужеродной ДНК в YA может происходить нарушение рамки считывания маркерного дрожжевого гена. В результате продукт этого гена не образуется, и при выращивании клеток на специальной среде можно наблюдать цветную реакцию. Кроме того, некоторые YA -векгоры несут селективный маркер, независимый от сайта клонирования. Несмотря на все преимущества, YA пока не использовались для промышленного синтеза гетерологичных белков. [c.137]

    В начале 80-х годов стало очевидно, что современкому генному инженеру компьютер необходим не менее (а иногда и более) чем физи ку, химику или экономисту. Возникла необходимость в создании автоматизированного рабочег о места генног о инженера. При этом выявилось, что ряд задач, возникающих у генных инженеров, связан с анализом огромного количества вариантов. Такие задачи не поддаются решению при помощи "лобовых подходов, для их анализа необходимо применение методов современной дискретной математики. Одна из та ких задач физическое (рестрикционное) картирование молекул ДНК -рассматривается в гл. 5 (Певзнер П.А.). Физическое картирование -один из самых распространенных методов анализа ДНК. В связи с предполагаемым ссквенированием генома человека объем работ по физическому картированию в ближайшие годы будет значительно увеличен. В настоящее время физическое картирование - один из разделов компьютерной генетики, где удалось "заставить" работать серьезные результаты из разных областей математики (теория графов, потоки в сетях, эргодическая теория). [c.7]


    Современные ВАС-векторы позволяют клонировать фрагменты ДНК длиной до 300 т.п.о. и выше. Рекомбинантные молекулы вводятся в клетки Е. соИ с помощью электропорации (см. раздел 3.8), причем эффективность образования трансформантов в 10-100 раз выше, чем при обычной трансформации сферопластов дрожжей векторами семейства YA . Это позволяет уменьшить исходное количество ДНК, необходимое для конструирования репрезентативных клонотек генов (см. гл. 4). При скрининге таких клонотек используются традиционные методы работы с бактериальными колониями. В отличие от Y АС-ДНК, которая находится в клетках дрожжей в линейной форме, ВАС-векторы со вставками, как и традиционные F -факторы, существуют в бактериальных клетках в виде кольцевых суперскрученных молекул. Это облегчает их выделение и последующую работу с рекомбинантными молекулами ДНК в растворе, а кроме того, допускает повторное введение в бактериальные клетки этих ДНК, выделенных мини-препаративными методами. Поскольку рекомбинантные ВАС-векторы существуют в бактериальных клетках в виде одной копии, исключаются совместное клонирование в одной клетке разных фрагментов ДНК и образование химерных молекул, что очень важно для физического картирования больших геномов методами снизу вверх . Весьма существенным свойством системы клонирования, основанной на векторах семейства ВАС, является ее генетическая стабильность. Исходная структура клонированных фрагментов ДНК в пределах точности использованных методов сохраняется в таких векторах даже после 100 серийных пересевов бактериальных клеток, содержащих рекомбинантные молекулы ДНК. Все вышеперечисленные свойства переводят векторы ВАС в разряд сверхъемких векторов нового поколения. [c.94]

    Представляемый читателям обзор А. Янулайтиса содержит исчерпывающую информацию относительно важного класса ферментов— специфических эндонуклеаз рестрикции II класса. Именно эти ферменты служат одним из главных орудий генных инженеров, лежат в основе методов физического картирования геномов, анализа последовательности нуклеотидов в ДНК. Обзор охватывает литературу до 1988 г. включительно и может служить полезным справочным материалом для широкого круга исследователей, применяющих рестриктазы II класса в своей работе. [c.3]

    Иногда для достижения поставленной цели применяется метод поэтапного клонирования. На первом этапе клонируется ген метилазы. Для определения предположительной локализации рестриктазного гена проводится физическое картирование последовательностей донорной ДНК, окружающих ген метилазы. В качестве зонда для блот-гибридизации используется ген метилазы [147, 148] или синтетические олигонуклеотиды [124]. Донорная ДНК перед лигированием обрабатывается отобранными таким образом рестриктазами с целью вырезания фрагмента предположительно содержащего не только ген метилазы, но и рестриктазы. Однако не всегда реализация такого подхода дает положительный результат. Поучителен в этом отношении пример по клонированию генов гт Dde I [124]. В этом случае на первом этапе удалось клонировать только ген метилазы. Впоследствии это нашло объяснение в том, что при получении банка генов провели исчерпывающий гидролиз донорной ДНК рестриктазой Hind ni, которая как потом оказалось имеет сайт в гене рестриктазы. Для картирования генов гт Dde I методом блот-гиб-ридизации в качестве молекулярных зондов применили метилазный ген и смесь синтетических олигонуклеотидов, имеющих гомологию с геном рестриктазы. Структура олигонуклеотидов была предсказана на основе анализа аминокислотной последовательности N конца рестриктазы, выделенной в гомогенном состоянии из природного продуцента. В результате проведенных исследований было определено, что гены гт Dde I расположены на Pst I фрагменте хромосомной ДНК величиной 4,8 кб. Однако попытки клонировать этот фрагмент не дали [c.187]

    Физическая карта (Physi al map) Расположение генов на хромосоме, установленное с помощью различных методов (электронная микроскопия, секвенирование, рестрикционное картирование). Расстояние на такой карте измеряется в числе пар нуклеотидов. [c.563]

Рис. 7.7. Геном фага А,. Гены, существенные для развития фага, обозначены строчными буквами. А, Процентная шкала расстояний вдоль молекулы ДНК. Б. Генетическая карта, построенная на основании частот рекомбинации. В. Физическая карта, основанная на гетероду-плексном анализе. Г. Некоторые из перестроек, использованные при гетеродуплексном картировании gal и bio-замещения, делеции и замены, влияющие на иммунные свойства фагов лямбдоидного семейства. Д. Распределение генетических функций в геноме. Рис. 7.7. <a href="/info/1874538">Геном фага</a> А,. Гены, существенные для <a href="/info/1325136">развития фага</a>, обозначены <a href="/info/1849877">строчными буквами</a>. А, Процентная шкала расстояний вдоль молекулы ДНК. Б. <a href="/info/98321">Генетическая карта</a>, построенная на основании <a href="/info/33362">частот рекомбинации</a>. В. <a href="/info/100450">Физическая карта</a>, основанная на <a href="/info/1109469">гетероду</a>-<a href="/info/888254">плексном</a> анализе. Г. Некоторые из перестроек, использованные при <a href="/info/1338340">гетеродуплексном картировании</a> gal и bio-замещения, делеции и замены, влияющие на <a href="/info/1379605">иммунные свойства</a> фагов лямбдоидного семейства. Д. Распределение <a href="/info/610970">генетических функций</a> в геноме.
    Появившиеся в последнее время методы позволяют составлять подробные карты очень больших геномов. Есть две категории карт 1. Физические карты, основывающиеся на строении молекул ДНК, составляющих каждую хромосому. Сюда относятся рестрикционные карты и систематизированные библиотеки клонов геномной ДНК. 2. Карты генетического сцепления их строят, основываясь на частоте совместной передачи потомству двух или нескольких признаков - генетических маркеров, различных у отца и матери и приписываемых определенному участку хромосомы. В качестве маркеров издавна принято использовать те гены, экспрессия которых обнаруживается по их эффекту (таковы, в частности, гены, вызывающие генетические болезни, например мышечную дистрофию). Разработанные сравнительно недавно новые методы с применением рекомбинантной ДНК дали возможность использовать в качестве генетических маркеров короткие последовательности ДНК, содержащие один из сайтов рестрикции и различающиеся у отдельных индивидуумов, такие последовательности особенно удобны для генетического картирования, потому что под действием рестрикционной нуклеазы возникают фрагменты, различающиеся по своей длине, и этот полиморфизм длины рестрикционных фрагментов (ПДРФ) легко может быть выявлен блот-анализом по Саузерну с помощью подходящего ДНК-зонда (рис. 5-90). [c.342]

    Мутации, т. е. наследуемые изменения в генетическом материале, представляют собой важное биологическое явление. Будучи первоисточником всех биологических изменений, они наряду с механизмами переноса генов обусловливают генетическую изменчивость, поставляющую материал для эволюции. Мутации и индукция новых мутаций мутагенами представляют собой ценный инструмент в генетических и биохимических исследованиях. Во-первых, изменения, которые вызывает мутация в определенном гене, позволяют не только идентифицировать этот ген, но и точно указать его место в хромосоме с помощью метода генетического картирования. Во-вторых, анализ мутантных щтаммов, у которых нарущены различные этапы сложной цепи биохимических процессов, может вскрыть детали организации генетического и биохимического аппаратов. В-третьих, знание механизма действия различных мутагенов может помочь в установлении корреляций между мутагенным и канцерогенным действием множества факторов окружающей среды, таких, как химические агенты, радиоактивное излучение и другие физические факторы. [c.8]

    Недавно сконструированы векторы, содержащие промоторы SP6, Т7 или ТЗ, непосредственно примыкающие к сайтам для клонирования ([8] и неопубликованные результаты). Это позволяет быстро и легко приготовить меченные згр РНК-зонды, специфичные в отношении концов клонированной ДНК и поэтому очень подходящие для использования в качестве зонде в для идентификации новых космид, вставки в которых перекрываются со вставкой в исходной космиде. Этот процесс выделения перекрывающихся клонов известен как прогулка по геному, причем использование промоторных систем SP6/T7/T3 может существенно уменьшить время и труд, затраченный на проведение такой прогулки , поскольку при этом отпадает необходимость в идентификации концов клонированных фрагментов с помощью рестрикционного картирования и физического выделения этих фрагментов для приготовления новых зондов. [c.65]

    В большинстве случаев эффективное использование техники гетерояуплексного картирования, которую мы только что описали, требует аккуратного измерения длин одно- и двухцепочечных участков ДНК. Измерение расстояния между различными петлями или особенностями гибридов позволяет построить физическую карту ДНК. Если генетическое значение делеции или локализация отдельных генов известны, физическая карта может быть использована для построения генетической карты. Метод является особенно мощным потому, что он позволяет локализовать гены, используя лишь выделенные транскрипты РНК, даже когда не удается обнаружить мутантные фенотипы. В принципе он позволяет картировать даже области ДНК, которые вовсе не были транскрибированы. Любой изолированный или синтезированный фрагмент ДНК может быть гибридизован с образованием двухцепочечной структуры и затем идентифицирован с помощью электронного микроскопа. Длины соответствующих участков можно измерить абсолютным методом, если в поле микроскопа имеется стандарт длины для калибровки увеличения. При некоторых условиях с помошью электронного микроскопа удается получить контурную длину ДНК, находящуюся в прекрасном соответствии с теми размерами, которые вычисляют исходя из известной геометрии двойной спирали. Однако контурная длина зависит от процедуры нанесения ДНК на подложку, которая поддерживает образец в микроскопе. Поэтому на практике для более точного измерения длин к каждому образцу добавляют молекулы ДНК известной длины и используют их в качестве внутреннего стандарта. [c.167]

    Физические карты хромосом ценны в сочетании с их генетическими картами. Ранее генетическое картирование было возможно лишь в случаях, когда гены обладали легко определяемым фенотипом, что достаточно редко. Существенно расширило возможности генетического картирования введение в практику метода, основанного на явлении полиморфизма длин рестрикционных фрагментов (ПДРФ). Это явление вызвано наличием в геномах индивидуальных особей множественных структурных различий. [c.294]

    Важнейшую роль в структурных исследованиях генома играет изучение его полиморфизма. Этот раздел молекулярной генетики является основой для понимания принципов молекулярной эволюции, механизмов возникновения патологических мутаций, для оценки факторов риска при воздействии потенциальных токсических агентов окружающей среды на человеческий организм, наконец, для понимания основ различной индивидуальной восприимчивости лекарств. Эти исследования получили новый импульс с открытием полиморфных мини- и микросателлитов, которые позволили осуществить тонкое генетическое картирование генома и в конечном счете создать интегрированные карты генома, объединяющие физические и генетические карты генома человека в единую систему. Это в свою очередь привело к развитию методов позиционного клонирования, которые позволяют быстро клонировать гены, начав с исследования их сегрегации в семьях. [c.7]

    Используя клонированные гены, уже картированные с помощью рекомбинантных методов, можно сопоставлять физическую и генетическую карты, как в случае с Е. соИ. Относительно подробные генетические карты построены для таких организмов, как дрожжи, нематода и D. melanogaster, и здесь такое сравнение может оказаться весьма продуктивным. У D. melanogaster корреляция упрощается благодаря наличию обширных цитогенетических данных. Комбинированные молекулярно-генетические карты позволяют клонировать гены, связанные с определенными фенотипом и локусом, но продукт которых неизвестен (например, так был клонирован ген per D. melanoijaster, рис. 6.39). [c.353]


Смотреть страницы где упоминается термин Физическое картирование генома: [c.89]    [c.477]    [c.480]    [c.155]    [c.404]    [c.271]    [c.276]    [c.190]    [c.477]    [c.480]    [c.40]    [c.269]    [c.54]    [c.276]   
Молекулярная биотехнология принципы и применение (2002) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Физическое картирование ДНК



© 2025 chem21.info Реклама на сайте