Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Электролиз титана

    Кроме бериллия, электролизом расплавленных солей можно получать и другие тугоплавкие металлы (скандий, иттрий, титан, цирконий, гафний, торий, ванадий, ниобий, тантал, хром, молибден, вольфрам и рений). Все они являются элементами переходных групп периодической системы, для которых характерно образование катионов нескольких валентностей. [c.530]

    Условия электролиза. В производстве гипохлорита натрия используют различные материалы для изготовления анодов — графит, магнетит, титан с осажденной на поверхность платиной, ОРТА. Наибольший интерес в настоящее время представляют ОРТА. [c.179]


    В цветной металлургии электролиз используется для извлечения металлов из руд и их очистки. Электролизом расплавленных сред получают алюминий, магний, титан, цирконий, уран, бериллий и др. [c.181]

    Навеску стали (или чугуна) растворяют в кислотах, после чего раствор подвергают электролизу со ртутным катодом в слабокислой среде. В результате железо, хром, марганец и другие металлы осаждаются на ртутном катоде, образуя амальгамы, а титан, алюминий и ванадий в виде соответствующих ионов остаются 8 растворе. [c.446]

    Проведите электролиз раствора (0,5 М) сульфата или хлорида титана (IV). Каковы продукты электролиза Образуется ли металлический титан Почему раствор у одного из электродов (каком ) окрашивается в фиолетовый цвет  [c.369]

    В качестве катодов можно применять нержавеющую сталь, титан, алюминий, магний и их сплавы (электрон и др.), поверхность которых всегда покрыта пассивирующей пленкой, благодаря чему губчатый осадок после электролиза легко отделяется от катода. Для равномерного распреде,ления тока по катодной поверхности и получения более однородного (монодисперсного) осадка целесообразно применять катоды цилиндрической или шарообразной формы. [c.324]

    Электролизом расплавов в промышленности получают алюминий, магний, натрий, литий, кальций, титан и другие металлы, потенциалы выделения которых из водных растворов солей более отрицательны, чем потенциал выделения водорода. При электролизе водных растворов хлоридов щелочных металлов выделяются хлор, водород, а также получают каустическую соду. Водород и кислород высокой чистоты выделяются в результате электролиза водных растворов щелочей. [c.251]

    Практическое значение имеет применение ртутного катода для отделения большого количества одного или одновременно нескольких металлов, переходящих в амальгаму, от примеси другого металла, остающегося в растворе. Такие элементы, как алюминий, титан, цирконий, фосфор, мышьяк, ванадий и др., не образуют амальгам и остаются при электролизе с ртутным катодом в растворе. Другие металлы, как железо, хром, медь, висмут, серебро, кадмий, молибден, цинк, олово, никель, кобальт и др., легко и количественно осаждаются на ртутном катоде, для электролиза с электролиза применяют различные приборы, [c.202]

    Несколько замечаний об электролитическом получении никеля с нерастворимым анодом. Из обзора электрохимических свойств никеля ( 2—7) видно, что 10—15 г/л являются предельным содержанием кислоты в растворе, при котором можно получать никель с более или менее высоким выходом по току. Поэтому электролитическое получение никеля с нерастворимым анодом осуществимо только при условии надежного диафрагмирования анода либо при непрерывной нейтрализации раствора закисью или карбонатом иикеля. Едва ли это экономически целесообразно ввиду значительного расхода щелочей. Однако применение концентрированных растворов хлористого никеля позволяет вести электролиз с нерастворимым анодом (графит или платинированный титан). При этом можно использовать аноды с коробками для собирания и отвода газообразного хлора и диафрагмы из пористого перхлорвинила. Электролит — проточный. [c.389]


    По химическим признакам среди металлов выделяют активные (ЩМ, ЩЗМ, РЗЭ) и инертные, или благородные (ПМ, титан и др.). Важной является классификация по способу получения металлы бывают самородными или входят в состав руд, где они находятся в окисленном состоянии. Восстановление из руд ведут металлотермическим способом, используя активные металлы (натрий, кальций, магний и др.), углерод, водород, приемы порошковой металлургии, электролиз растворов или расплавов и т. д. [c.255]

    Условия электролиза. Условия электролиза с целью получения солей пероксодвусерной кислоты мало отличаются от описанных выше. В качестве анодов применяют титан с нанесенной на его поверхность платиной, а также диоксид свинца, электро-осажденный на титановую основу. [c.193]

    Важнейшими природными соединениями переходных элементов являются сульфиды и оксиды. Суммарный кларк переходны с элементов 5 мас.%, из них основную долю составляет железо (4,7%), на втором месте находится титан (- 0,6%), на третьем — марганец (- О.Р/о). В свободном состоянии переходные элементы получают в основном восстановлением их оксидов алюминием, кальцием, водородом, электролизом или разложением малопрочных соединений (галогенидов, карбонилов, оксалатов и некоторых других). [c.490]

    В настоящее время электролиз расплавленных сред приобретает все большее значение для технического получения тугоплавких металлов, таких, например, как титан, цирконий, торий, хром, марганец и других металлов а также для получения фтора. [c.240]

    К металлам, получаемым преимущественно термическим восстановлением, относятся также тугоплавкие металлы — титан, цирконий и др. Однако их получение возможно и электролизом расплавленных соединений. [c.318]

    Попытки получать тугоплавкие металлы в чистом виде электролизом расплавленных солей известны давно. Особенностью подобного процесса является то, что на катоде выделяется металл в твердом виде, а не в расплавленном, как это имеет место для А1, Mg, Na и других легкоплавких металлов. Но при высоких температурах получать при катодном осаждении твердый металл в компактном виде не удается. В этом случае катодный осадок получается в виде раздробленного более или менее крупного порошка, иногда прилипающего к катоду в виде друзы кристаллов. Извлечение порошкообразного металла из электролита требует отмывки католита (электролита) от металла чаще всего растворением в воде или слабой кислоте. Таким образом, появляется добавочная технологическая операция, связанная с некоторыми потерями металла. Поэтому ранее из тугоплавких металлов в чистом виде электролизом расплавленных солей получали лишь бериллий. Однако за последнее время стали получать электролизом и другие чистые тугоплавкие металлы — титан, цирконий, тантал, ниобий и др. [c.324]

    Электролитическое получение и рафинирование титана. Титан нельзя получить электролизом водных растворов. Нормальные электродные потенциалы титана [c.276]

    Титан можно вводить в электролит в виде различных соединений. Электролиз ведут ниже температуры плавления титана, поэтому он получается в виде небольших кристаллов. Процесс сопровождается образованием на катоде продуктов неполного восстановления, которые могут перемещаться к аноду и окисляться на нем, что снижает выход по току. Уменьшить образование соединений низших степеней окисления можно подбором режима электролиза, состава электролита и отделением анодного пространства пористой диафрагмой [45, 57, 58]. [c.276]

    Анодами при электролизе хлоридов с нерастворимым анодом служат графитовые стержии либо платинированный титан. Поскольку в хлористом растворе имеется значительное количество хлористого аммония, а анодном пространстве наравне с выделяющимся хлором разлагается NH4 I по реакции [c.507]

    Условия электролиза. Электросинтез пербората натрия реализуется при высоком положительном потенциале, поэтому в качестве анода используют платину либо титан, покрытый платиной. Катод изготавливают из углеродистой или нержавеющей стали или из никеля. [c.197]

    Диоксид свинца принадлежит к классу полупроводников, обладающих проводимостью, близкой к проводимости металлов. Аноды из диоксида свинца обладают высокой стойкостью и могут быть использованы для проведения реакций электрохимического окисления при высоких положительных потенциалах. Получают такие аноды электроосаждением при электролизе кислых или щелочных растворов солей свинца. В результате анодного окисления двухвалентного свинца, являющегося катионом при электролизе кислых растворов или входящего в состав анионов при электролизе щелочных растворов, образуется РЬОа. В качестве основы, на которую производится электроосаждение диоксида свинца, с наибольшим успехом используется титан, поверхность которого обрабатывают механически (например, фрезерованием) для улучшения сцепления покрытия путем нанесения сетки канавок или выступов. [c.13]


    Условия электролиза. Процесс электрохимического синтеза пероксобората протекает при высоком положительном потенциале, поэтому в качестве анода используют платину либо титан, покрытый платиной. [c.197]

    Условия процесса. Ранее диоксид марганца получали с использованием анодов из графита. Эти аноды были рассчитаны на одноразовое использование — после электролиза графитовые аноды перерабатывали вместе с диоксидом марганца. На практике кроме графитовых используются свинцовые аноды испытаны титановые аноды и аноды из сплава титан — марганец, последние отличаются малой склонностью к пассивации. [c.205]

    Эту реакцию ведут в герметическом стальном аппарате при 800 — в атмосфере благородного газа (аргона или гелия). Образовавшийся в виде губки титан тонет в слое жидкого хлорида магния. Продуктами этого процесса являются, таким образом, титановая губка и хлорид магния. Последний иеиол( уется для получения из него (посредством электролиза расплава) магния и хлора, возвращаемых па производство тетрахлорида титапа и его восстановлепие. Титановую губку, сильно загрязненную магнием и его хлоридом, промывают разбавленной соляной кислотой, сушат и после этого подвергают переплавке также в атмосфере благородного газа или в вакууме, причем иолучается чистый титан, п[)нгодный для приготовления технических сплавов. [c.273]

    И ) оксида титана (IV) получают хлорид титана (IV), а из последнего магний термическим методом - металлический титан. Образующийся при этом хлорид магния подаер ают электролизу магний и хлор возвращают в производство. Составьте уравнения указанных процессов. [c.221]

    Эффективность такого сплавообразования, однако, не постоянна во время электролиза, так как поверхность катода (состав поверхностного сплава) изменяется и в данном случае по мере насыщения ее щелочным металлом или титаном выделение последних прекращается. [c.434]

    Если потенциал металлического анода имеет более отрицательное значение, чем потенциал ионов ОН или других веществ, присутствующих в растворе, в газовой фазе около электрода или на электроде, то происходит растворение металла. При этом протекает электролиз с растворимым анодом. Если потенциал металлического анода близок к потенциалу других электродных процессов, то наряду с растворением металла на аноде протекают также другие процессы, например разряд ионов 0Н . В этом случае также говорят об электролизе с растворимым анодом, но учитывают и другие анодные процессы. Если потенциал металла или другого проводника первого рода, используемого в качестве анода, имеет более положительное значение, то протекает электролиз с нерастворимым анодом. В качестве нерастворимых анодов применяют золото и платиновые металлы, диоксид свинца, оксид рутения и другие вещества, имеющие положительные значения равновесных электродных потенциалов, а также графит. Некоторые металлы практически не растворяются из-за высокой анодной поляризации, например никель и железо в щелочном растворе, свинец в H2SO4, титан, тантал, нержавеющая сггль. Явление торможения анодного растворения металла из-за образования защитных слоев называется пассивностью металла. [c.210]

    В лаборатории института Гипроникель разработан способ электролитического получения никеля чистоты 99,9999% с применением нерастворимого анода. Из раствора N 012, приготовленного растворением карбонильно го никеля, удаляют примеси железа, кобальта, меди и других более электроположительных металлов с помощью электролитической очистки. Окончательную очистку от меди производят дитизоном, а доочистку от железа — купфероном. Экстрактором служат чистые ССЦ или С2Н5О. Электролиз ведут в растворе 150 г/л N1 в виде ЫЮЬ при температуре 70°, п ютности тока 1300 а/м . Катодом служит титан, анодом — чистейший графит. Полученный осадок нагревают в течение нескольких часов в вакууме при 1400°, при этом никель теряет водород, кислород, углерод, а также цинк, олово, кадмий, оставшиеся после электролитической очистки. [c.585]

    Прп электролизе материал катода — титан, никель, медь. Нерастворимый анод — платинированный титан или свинец растворимый анод — медь. Необходимо проверять содержание меди и серной кислоты в электролите по описанной ниже методике и соответственно корректировать электролит. Медная губка юдвержена окислению. Поэтому после электролиза ее тщательно отмывают на воронке Бюхнера от раствора дистиллированной водой (50—60°С), контролируя ионы меди в фильтрате раствором К4ре(СН)б, затем губку стабилизируют для предохранения от окисления 0,02—0,05 % раствором мыла при 60—70 С. Остатки стабилизатора удаляют промывкой горячей подои до прекращения ее помутнения, отфильтровываьэт поро-пюк II сушат в вакуумном сушильном шкафу. [c.135]

    Резкий скачок в промышленном производстве А1 произошел в 80-х годах прошлого столетия, когда было технически освоено получение алюминия электролизом расплавленного раствора глинозема в криолите. Теория электрометаллургии была создана П. П. Фе-дотьевым. Отечественные ученые разработали метод получения глинозема нз нефелина. Глинозем — тугоплавкий материал, температура плавления чистого А1 0з 2072 °С, и для ее понижения добавляют преимущественно криолит Мал[А1Рг,1. При этом температура плавления понижается до 960 °С. Получение А ведут в специальных электрических печах. Продажный металл содержит примерно 99% А1. Главными примесями являются железо, кремний, титан, натрий, углерод, фториды и др. Для получения алюминия высокой степени чистоты его подвергают электролитическому рафинированию. Используют также процесс нагревания А1 в парах А1Рз (транспортную реакцию)  [c.271]

    Некоторые металлы не удается выделить электролизом водных растворов. Это металлы, обладающие большим отрицательным потенциалом (щелочные, щелочноземельные), а также металлы, на которых имеется небольшое перенапряжение водорода (ванадий, ниобий, тантал, титан, цирконий). В определенных, условиях они осаждаются па элекТ роде тончайшим слоем, но затем процесс прекращаетс.ч вследствие выделения на них водорода. [c.25]

    Попытки получить титан электролизом расплавленного электролита постоянного состава, питаемого добавками Ti02 (по аналогии с получением алюминия из криолито-глиноземных расплавов), не получили практического осуществления. Металл получается в этом случае с повышенным содержанием кислорода и в виде очень мелкокристаллического, легко окисляющегося осадка, мало пригодного для прессовки и переплавки. [c.327]

    Более успешны попытки получать титан электролизом расплавленной смеси хлоридов и фторидов щелочных металлов (например, 30 вес. 7о Na l, 30 вес. % КС и 40 вес. % KF), в которую вводится Ti U в газообразном состоянии. Однако получить металл высокой чистоты и при достаточно эффективных техникоэкономических показателях электролиза не удается. [c.327]

    Для электролиза удобен гексафторотитанат калия K2TiFg. Его электролизом получен титан, не уступающий по качеству лучшим сортам магниетермического титана. Недостаток процесса — увеличение вязкости и температуры плавления электролита вследствие накопления в нем КЕ [34, 45, 58]. [c.277]

    Титан и его сплави оксидируют электролитически иа аноде Оксидирование повышает антифрикционные свойства и химическую стойкость ти-тапа в растворах серной, соляиой и фосфорной кислот Оксидные пленки повышенной толнщиы обладают высокой адсорбционной способностью, электроизоляционными свойствами ие обладают. Цвет тенки зависит от состава сплава н режима электролиза и изменяется от светло-зеленого с коричневым оттенком до тсмио-серого с зеленоватым оттенком. [c.225]

    Электролиты 1—3 — растворы серпой кислоты В электролите 1 с копцектрапиен серной кислоты 180 г/л прн 80—100 С, /я =0,5 А/дм , /=80 100 В. т=(2- 8) ч анодные плепкн толщиной 0,8—2,5 мкм получаются плотными, блестящими, черного цвета Пленки толщинои 0 — 0.3 мкм, полученные в элект раните 2, с концентрацией серной кислоты 400 -/л прн 18—25 °С, А=1 А/дм /=30 П, т=10 мни. служат как подслой перед напесснием гальванического покрытия иа титан и его сплавы Электролит 3. серная кислота 350—400 г/л, соляная кислота 60—65 г/л используют при 40—50 С, Д=2-=-4 А/ды для получения толстых (20—40 мкм) анодных пленок Плотность тока ступенчато повышают через каждые 2—3 мин ка 0,5 А/дм до напряжения пробоя, после которого устанавливается указанная анодная плотность тока, при которой продолжают электролиз до получения пленки заданной толщины. [c.225]

    Условия электролиза. Материал электродов. В качестве анодов в электролизерах с мембраной эбычно используют титан часто в виде просечной сетки, покрытой смесью оксидов рутения и других металлов (например, титана). Катодом служит стальная сетка. Обычно электроды биполярные. Электрический контакт между стальным катодом и титановым анодом осуществляется с помощью металлически шпилек, которые проходят сквозь пластмассовую перегород1су. В некоторых случаях в качестве биполярного электрода исгользуют биметалл из титана и стали, полученный из листов этих металлов с помощью взрывной технологии. [c.172]


Смотреть страницы где упоминается термин Электролиз титана: [c.511]    [c.259]    [c.135]    [c.206]    [c.151]    [c.12]    [c.8]    [c.12]    [c.228]    [c.275]    [c.204]    [c.379]    [c.12]   
Технология редких металлов в атомной технике (1974) -- [ c.296 ]

Технология редких металлов в атомной технике (1971) -- [ c.296 ]




ПОИСК







© 2025 chem21.info Реклама на сайте