Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Аноды для электроосаждения

    Нанесение гальванических покрытий проводится в электролизере, называемом гальванической ванной. Электролизер имеет два электрода и раствор электролита. Катодом служит изделие, на которое наносится покрытие. На катоде идет процесс восстановления находящихся в растворе электролита ионов металла (электроосаждение металла) М" + пе М. Анодом обычно служит такой же металл, что и металл покрытия. Процесс на аноде противоположен процессу на катоде М — пе М" . [c.375]


    Поверхностно активные вещества широко применяют при электроосаждении металлов для получения плотных высококачественных осадков, обладающих блеском, мелкокристаллической структурой и т.д. Введение в электролит поверхностно активных веществ предотвращает образование на катоде шишек и дендритов, способствует коагуляции шлама, образующегося на аноде. Все многообразие применяемых поверхностно активных веществ можно разделить на три типа катионоактивные, анионоактивные и молекулярные. Многие из этих веществ содержат серу, азот и относятся к различным классам органических соединений. Существенное значение имеет структура поверхностно активных вещества. Так, например, активность алифатического ряда спиртов повышается по мере увеличения длины углеводородного радикала моно- и дикарбоновые кислоты обладают большей активностью, чем соответствующие спирты, а кислоты с большим числом полярных групп активнее кислот с меньшим числом полярных групп действие параизомеров фенола более эффективно, чем орто- и метаизомеров. Следовательно, чем больше число свободных пар электронов в органической молекуле, способных взаимодействовать с поверхностными атомами металла, тем большей активностью обладают эти вещества. [c.247]

    Электроосаждение медных сплавов возможно при использовании сложных щелочных цианистых растворов в температурных пределах 30—90° С (в зависимости от используемого раствора). Латунные и бронзовые изделия могут получать покрытие при использовании анодов соответствующего состава сплавов, причем катодная производительность и состав электролитических осадков зависят от плотности тока, применяемого в процессе осаждения. Большинство осадков обладает довольно хорошим блеском, но выравнивание в основном плохое или отсутствует. Для декоративного использования стали применяют обычно тонкослойные осадки, без грунта или в сочетании с никелем в целях улучшения выравнивания. При этом обычно наносят лак, чтобы избежать потускнения под влиянием атмосферных воздействий. В некоторых случаях можно использовать декоративное хромовое покрытие, но осадки сплавов меди часто имеют высокие внутренние напряжения, что может привести к серьезному растрескиванию хрома. Электролитические осадки бронзы могут служить в качестве защитных грунтовых покры- [c.95]

    При электроосаждении сплавов применяют аноды из термического сплава (латунь, бронза, олово — свинец), а также из отдельных металлов, входящих в состав сплава, с раздельной или общей подводкой тока к ним. В случае использования анодов из одного металла убыль ионов второго металла компенсируется добавлением в электролит его соли. [c.52]


    Электрогравиметрический метод анализа заключается в выделении определяемого элемента в виде металла на предварительно взвешенном катоде, после чего электрод с осадком взвешивают и по разности массы находят массу металла. Некоторые вещества могут окисляться на платиновом аноде с образованием плотного осадка оксида, например РЬ + до РЬОг. Электролиз можно использовать также для разделения ионов. Методы анализа, основанные на электроосаждении как и другие гравиметрические методы, должны удовлетворять определенным требованиям определяемое вещество должно выделяться количественно, полученный осадок должен быть чистым (соосажде-ние примесей должно быть минимальным), мелкозернистым и плотно сцепленным с поверхностью электрода (чтобы последующие операции промывания, высушивания и взвешивания не вызвали потери осадка). Для получения осадков, удовлетворяющих этим требованиям, необходимо регулировать плотность [c.180]

    При электроосаждении белой бронзы аноды выполняют из меди и нержавеющей стали или графита. Оловянные аноды нежелательны из-за опасности появления в электролите ионов двухвалентного олова, вызывающих образование на катоде губчатых осадков. Кроме того, поддерживать режим анодного процесса таким образом, чтобы при растворении олова образовались ионы только четырехвалентного олова, очень трудно. [c.441]

    Диоксид свинца принадлежит к классу полупроводников, обладающих проводимостью, близкой к проводимости металлов. Аноды из диоксида свинца обладают высокой стойкостью и могут быть использованы для проведения реакций электрохимического окисления при высоких положительных потенциалах. Получают такие аноды электроосаждением при электролизе кислых или щелочных растворов солей свинца. В результате анодного окисления двухвалентного свинца, являющегося катионом при электролизе кислых растворов или входящего в состав анионов при электролизе щелочных растворов, образуется РЬОа. В качестве основы, на которую производится электроосаждение диоксида свинца, с наибольшим успехом используется титан, поверхность которого обрабатывают механически (например, фрезерованием) для улучшения сцепления покрытия путем нанесения сетки канавок или выступов. [c.13]

    Существенную роль при электроосаждении сплавов играет правильный выбор материала анодов и режим анодного процесса. Для обеспечения постоянства состава электролита целесообразно применять аноды из сплава, компоненты которого при данных условиях растворяются с той же скоростью, с какой осаждаются на катоде. Однако практическое осуществление этого требования за редким исключением (латунь, желтая бронза) не удается, поэтому применяют комбинированные аноды из отдельных металлов, входящих в состав сплава, или один из этих металлов. [c.436]

    Покрытия получают электроосаждением на основном металле, служащем проводником. Металл, на который наносится покрытие, погружается в электропроводящий раствор, содержащий соли этого металла. Катодом служит основной металл при использовании ЭДС от внешнего источника, а анодом — стержень или лист покрывающего металла. В этом случае он переходит в раствор, как только на катоде происходит осаждение, поддерживая таким образом концентрацию ионов металла в растворе. [c.85]

    Напряжение на электролизере при анодном оксидировании алюминия значительно выше, чем во многих процессах электроосаждения металлов (см. табл. 13.1). Потенциалы выделения водорода из этих растворов на свинцовом катоде не превышают 1 В, падение напряжения в растворах при а = 100—300 A/м невелико. Вследствие высокого омического сопротивления пленок основное падение напряжения сосредоточено на аноде и зависит от толщины и пористости оксида. Этим объясняется значительно более высокое напряжение для процессов анодного оксидирования в электролитах №№ 2—5 в сравнении с электролитом № I. [c.82]

    Каким образом при электроосаждении покрытий сплавами решается проблема анода Проиллюстрируйте примерами. [c.294]

    Электрофорез находит в настоящее время широкое применение в технике, в процессах электроосаждения частиц из золей, суспензий и эмульсий. Таким способом получают ровные и прочные покрытия на металлах, погруженных в качестве электродов в суспензию— например, декоративные и антикоррозийные покрытия (из лакокрасочных композиций), электроизоляционные пленки (из латексов), пленки окислов, испускающих электроны, на вольфрамовых нитях радиоламп. Метод электроосаждения развивается в работах Лаврова с сотрудниками (ЛТИ) . Разрабатывается технология получения тиглей, чашек и другой химической и бытовой посуды. С этой целью суспензию каолина наливают в медную чашку, соответствующую по форме изготовляемому изделию и соединенную с анодом. Катод вводят в виде медной сетки, также повторяющей форму изделия. Суспензию непрерывно перемешивают для устранения оседания. Через несколько секунд после включения тока на аноде образуется прочный слой, легко отделяемый при нагревании от медной формы и образующий после обжига фарфоровое изделие. [c.216]


    Для того, чтобы предотвратить возрастание переходного сопротивления на границе титан — диоксид свинца вследствие увеличения толщины оксидной пленки на поверхности титановой основы в процессе эксплуатации анода, рекомендуют наносить на титан перед электроосаждением диоксида тонкий слой благородных металлов или их оксидов, графита, карбида либо бо-ридов титана, смеси оксидов олова или сурьмы. При подборе соответствующих условий удается получить гладкие блестящие осадки диоксида свинца толщиной в несколько миллиметров. [c.13]

    Электроосаждение — один из наиболее перспективных способов нанесения лакокрасочных материалов, заключающийся в осаждении лакокрасочного материала в виде концентрированного осадка на поверхности изделий под воздействием постоянного электрического тока. Осаждение осуществляется в результате придания частицам лакокрасочного материала, находящимся в электропроводящей жидкой среде, электрического заряда, противоположного по знаку заряду покрываемого изделия. Если лакокрасочный материал способен в данной среде переходить в ионное состояние, то его перенос осуществляется за счет заряда ионов — катионов, или анионов. В зависимости от того, чем служит окрашиваемое изделие — анодом или катодом — различают анодное осаждение (анафорез) или катодное (катафорез). Необходимым условием для электроосаждения является наличие электропроводящей среды. Этим способом наносят водные и органодисперсии полимеров и олигомеров. [c.219]

    Подобные реакции протекают и при гальваническом цинковании. Однако в процессе извлечения используется инертный анод (часто графит), а при электроосаждении — цинковый анод, для того чтобы концентрация ионов цинка оставалась [c.8]

    Электроосаждение, естественно, является катодным процессом той же самой электрохимической реакции, которая вызывает коррозию на аноде (см. гл. 1). Реакция проходит под контролем состава электролита, а потенциал и плотность тока должны иметь такие значения, при которых происходит катодное восстановление ионов металла. В связи с этим металл осаждается в большей степени, чем анодно окисляется до образования катионов или других окисленных форм. [c.85]

    Электроосаждение в основном производится из цианистых ванн (щелочных, нейтральных или кислотных), хотя мол<но использовать солянокислую ванну. Для улучшения блеска вводят добавки. Аноды могут быть из золота или инертного материала (например, графита или нержавеющей стали). [c.96]

    Цинк. Для электроосаждения цинка могут служить три типа электролитов кислотный, нейтральный и щелочной. Во всех случаях используются аноды из чистого цинка. Свойства выравнивания осадков очень плохие. [c.99]

    Толщина покрытия деталей с внутренними вырезами (особенно, с глубокими отверстиями) не получится равномерной в процессе электроосаждения из-за ограничения рассеивающей способности электролита (см. гл. 3). Процесс электроосаждения можно улучшить за счет дополнительных вспомогательных анодов и анодов нужной формы для выравнивания распределения плотности тока на поверхности обрабатываемого изделия. Равномерности покрытия внутренней части изделия, имеющего углубление с небольшим отверстием, можно достигнуть в процессе электроосаждения при использовании расположенных внутри отверстия анодов. В этих случаях наилучшее качество покрытия обеспечивается методом погружения в расплавленный металл, но утолщение покрытия в углублениях может изменить форму детали, а отверстия малого диаметра могут быть закрыты металлом, используемым для нанесения покрытия. При напылении металла на изделия неправильной формы покрытие не проникнет внутрь узких отверстий. [c.127]

    Кулонометрический метод. Принцип этого электрохимического метода определения толщины, заключающийся в анодном растворении металла на известной площади с измерением электрического заряда, потребляемого в данном процессе, противоположен принципу электроосаждения. С учетом площади, на которой происходит электролиз, и электрохимического эквивалента металла по закону Фарадея делается простой расчет количество электричества в кулонах, расходуемое в процессе, переводится в толщину растворенного покрытия. Для получения точных результатов расчета необходимо, чтобы растворение происходило с известным постоянным выходом по току на аноде (желательно 100%-ным). Выбранный электролит должен устранить возможность возникновения эффектов пассивации или избыточной поляризации и, кроме того, не оказывать химического воздействия на покрытие при отсутствии электрического тока. Разумеется, важно точно определить площадь анода. [c.144]

    С помощью закона Фарадея можно рассчитать длительность процесса электроосаждения заданного металла или, наоборот, количества вещества, растворившегося на аноде за определенный промежуток времени. [c.38]

    В промышленности наиболее широко используется метод анодного электроосаждения, при котором изделие, находящееся в ванне, является анодом, а корпус ванны — катодом. Все большее применение начинает получать метод катодного электроосаждения. При данном методе окрашиваемое изделие является катодом, а в качестве анода применяются специальные пластины ванна при этом заземляется. Применяя метод катодного осаждения, удается получать покрытия с высокой коррозионной стойкостью и равномерное по толщине. Объясняется это тем, что при катодном осаждении не протекает окислительная реакция связующих с кислородом, поскольку на катоде выделяется водород. [c.219]

    Ряд исседователей рекомендуют при осаждении олова из щелочных (станнатных) электролитов пользоваться лишь нерастворимыми анодами, при которых невозможен процесс образования ионов В этом случае значительно способствует повышению скорости покрытия и улучшению качества осадков олова реверсирование тока при электролизе. Разумеется, что с применением нерастворимых анодов электроосаждение олова не сопровождается возникновением ионов Sn + в электролите, но послеиий обедняется металлом, и потому требуется регулярное пополнение электролита станнатом. [c.188]

    Было установлено путем непосредственного измерения температуры анода в процессе электроосаждения с помощью хромель-копелевой термопары, впаянной в анод [116], что в процессе электроосаждения в зависимости от электрических параметров температура анода оказывает значительное влияние на структурно-механические свойства электроосажденных пленок. Высокое значение вязкости системы в случае резидрола обусловливает то, что при повышенных значениях электрических параметров и соответствующем возрастании температуры анода электроосажденная пленка не стекает с электрода, как это происходит в случае ВМЛ. [c.31]

    В-КФ-093, серь й, красно-коричневый, черный ОСТ 6-10-427-79 Для грунтования кузовов и кабин автомобилей. Для окраски узлоа и дета, - ей автомобилей Электроосаждение на аноде (анафорез) Вода деминерализованная 180 30 МИН [c.38]

    Получившие отрицательный заряд взвешенные частицы под действием. электрического поля перемещаются к аноду. Скорость движения взвешенных частиц, получивших заряд, невелика она зависит от размера частиц и гидравлического сопротивления газовой среды. 061.1ЧНО скорости электроосаждения колеблются в пределах от нескольких сантиметров до нескольких десятков сантиметров в секунду. [c.62]

    Никель чувствителен к агрессивным воздействиям, особенно в промышленной атмосфере. Из-за потускнения металла ве дедст-вие образования пленки основного сульфата никеля, уменьшающего зеркальный блеск поверхности, покрытия постепенно теряют отражательную способность [4]. Для того чтобы уменьшить потускнение, на никель электроосаждением наносят очень тонкий (0,0003—0,0008 мм) слой хрома. Отсюда возник термин хромовое покрытие , хотя в действительности оно в основном состоит из никеля. Оптимальные условия защиты достигаются, если в покровном хромовом слое образуются микротрещины. Чтобы получить этот эффект, в гальванически,е ванны для электроосаждения хрома вводят соответствующие добавки. Тонкий никелевый слой, осажденный из электролита, содержащего блескообразователи (обычно соединения серы), в свою очередь наносится на вдвое или втрое более толстый матовый слой, электроосажденный из обычной ванны никелирования. Многочисленные трещины в хроме способствуют инициации коррозии во многих местах поверхности, что уменьшает в конечном итоге глубину коррозионных разрушений, которые в противном случае протекали бы в нескольких отдельных точках. Блестянщй никель, содержащий небольшие количества серы, является анодом по отношению к нижнему слою никеля, в котором серы меньше, и поэтому выступает в качестве протекторного покрытия. Развитие любого питтинга, образующегося под хромовым покрытием, происходит в основном вширь, а не за счет роста в глубь никелевых слоев. Таким образом, предотвращается коррозия основного металла. Система многослойных покрытий обладает более высокой защитной способностью, чем однослойные хромовые или никелевые покрытия той же толщины [51. [c.234]

    В последнее время широкое применение в гальванотехнике получило электроосаждение металлов с периодическим изменением направления постоянного тока, так называемый электролиз реверсированньш током. Сущность этого метода состоит в том, что покрываемые изделия периодически, через малые промежутки времени, переключаются на анод и подвергаются действию обратного тока в течение нескольких секунд или долей секунды. Продолжительность прохождения обратного (анодного) тока не превышает 20% времени прямого (катодного) тока [14]. При этом осадки металлов получаются более гладкими, светлыми, иногда блестящими, с пониженными внутренними напряжениями и в некоторых случаях менее пористыми, чем при обычном электролизе. [c.350]

    Электроосаждсние меди проводят в потенциостатических условиях. В качестве электрода сравнения применяют медную проволочку, которую помещают в электролитический ключ с капилляром, подведенным к рабочей поверхности образца в электролите. Электролиз проводят с медным анодом при комнатной температуре в электролите состава (г/дм ) Си504-5Н20 — 70 НгЗО — 150 при катодном перенапряжении —100, —150, —200 и —250 мВ. Катод укрепляют на штанге, колеблющейся в вертикальном направлении с частотой около 50 кол/мин. Время электролиза рассчитывают согласно приложению IV. Ток измеряют спустя 1—2 мин после начала п юцесса электроосаждения. Результаты измерений и расчетов заносят в табл. 2.1. [c.20]

    Процесс электросинтеза йодоформа проводят на анодах из графита, никеля, нержавеющей стали, платины, электроосажденного диоксида свинца и ОРТА. Задание предусматривает проведение опытов с тремя из перечисленных материалов. Все три анода должны иметь примерно одинаковую площадь поверхности. Электролитом служит водно-спиртовый или водноацетоновый растворы иодида калия. Условия электролиза во всех трех случаях должны быть одинаковыми и находиться в пределах, указанных в предыдущих опытах. В качестве параметров процесса, как и выше, рассматриваюся выход по току продукта электролиза и удельный расход электроэнергии. [c.206]

    Другим интересным применением электролиза является покрытие металлов. Если, например, в только что описашюй электролитической ячейке вместо меди сделать катодом какой-либо другой металл, в процессе электролиза на нем будет образовываться медное покрытие. Покрытие одного металла другим в электролитической ячейке называется электропокрытием (электроосаждением). Предмет, на который хотят нанести покрытие, делают катодом в электролитической ячейке. Металл, который наносят на. яругие поверхности, делают анодом, как показано на рис. 19.14. Электропокрытие защищает различные предметы от коррозии и улучшает их внешний вид. Многие наружные части автомобилей, например бамперы и дверные ручки, электролитически покрывают хромом. [c.227]

    Этот же закон можно выразить иначе. Пусть I— сила тока в амперах, протекающего через электролитическую ячейку в течение / сек. Количество металла в граммах, растворенного на аноде ячейки или электроосажденного на катоде, будет равно [c.29]

    Известно, что электролизеры не имеют какой-то определенной номинальной производительности, так как она является функцией величины проходящего через электрохимическую систему тока. Соблюдая некоторые конструктивные и расчетные требования, можно обеспечить производительность одного и того же электролизера тем большую, чем больше плотность тока на электродах. Опыт показывает, что в процессе извлечения металлов с применением нерастворимых анодов повышение плотности тока увеличивает не только скорость процесса, но и выход по току. Повышение плотности тока позволяет механизировать выгрузку электроосажденного металла, повысить качество катодного осадка и улучшить условия труда. Поэтому проблему совершенствования и интенсификации процессов электрокристаллизации металлов в гидрометаллургии связывают с повышением плотности тока. Эта задача может быть решена различными путями. П е р в ы й из этих путей — использование нестационарных режимов электролиза, характеризующихся непостоянством величины и направления тока во времени. Применение тока сложной формы вместо постоянного ведет к повышению качества покры- [c.504]

    В растворах простых солей металлов изгленение pH в католите может привести к тому, что ионы металла окажутся связанными в гидроокиси или основные соли, вследствие чего нарушится нормальный процесс электроосаждения. Неустойчивость pH раствора может существенно влиять не только на катодные процессы, но и на анодное поведение нерастворимых (покрытых пассивной пленкой) и хорошо растворимых анодов. Поэтому введение некоторых посторонних электролитов при осаждении металлов необходимо не только в целях повышения электропроводности раствора, но и для сохранения постоянства pH. [c.513]

    Потенциал электроосаждения возникает вследствие иоддчи тока от внешнего источника и затрудд1еннй протека[[ия Э1ектродных реакций на аноде и катоде. Его величина зависит от плотности тока [c.18]

    Весьма перспективными в производстве хлората являются аноды из электроосажденного на титановую основу диоксида свинца. Износ таких анодов в несколько раз меньше, чем износ графитовых анодов, и составляет 0,8—1,0 кг/т хлората. [c.181]

    Достаточно высокие, но все же ниже, чем на платиновых или платино-титановых анодах, выходы перхлората по току могут быть достигнуты и на анодах из электроосажденного диоксида свинца. [c.187]

    Температура электролита. Повыщение температуры электролита так же, как и перемешивание, способствует интенсификации процесса электроосаждения металлов. При нагревании электролита возрастают катодный и анодный выходы по току (устраняется пассивирование анодов), увеличивается растворимость солей металлов и электропроводимость растворов, улучшается качество осадков вследствие снижения внутренних напряжений. В ряде случаев при комнатной температуре компактные, доброкачественные осадкк вообще не образуются-(станнатные) или качество осадюв существенно ухудшается (пирофосфатные электролиты), поэтому электролиты нагревают до 50—80°С. При этом появляется возможность работать при более высоких плотностях тока. Вместе с повышением температуры обычно снижается катодная поляризация, а в этих условиях скорость роста кристаллов преобладает над скоростью возникновения активных, растущих кристаллов, что должно приводить к образованию крупнозернистых и более пористых осадков, В то же время в горячих электролитах можно значительно увеличить допустимую плотность тока и как бы нейтрализовать отрицательное влияние температуры на структуру осадков. [c.252]

    Электроосаждение хрома почти всегда производят из растворов серной или хромовой кислот с использованием анодов из свинца. Рабочая температура меняется в пределах 37—65° С в зависимости от используемого электролита для нанесения гальванических покрытий. Хром периодически пополняют, заменяя использованный, за счет добавок хромовой кислоты. Покрытия блестящие, но рассеивающая способность слабая, что приводит к неравномерности покрытия по толщине и неполному заполнению углублений обрабатываемых изделий. Кроме того, КПД катода низкий (в пределах 8—18% в зависимости от используемого раствора и рабочих условий). Более высокий КПД катода можно получить в ваннах, катализуемых фторидом кремния (до 25%), или в ваннах (типа Борнхаузера) тетрахромата (до 30%). [c.92]

    Нанесение покрытий электроосаждением водоразбавленных ЛКМ осуществляют только в производственных условиях погружением изделий, движущихся на конвейере, в ванну с водоразбавленным лакокрасочным материалом. Изделия в ванне — анод, корпус ванны или специальные пластины — катод. На аноде осаждается плотная водонерастворимая пленка. [c.168]

    Тугоплавкие металлы применяют в электронной и инструментальной промышленности. Благородные металлы используют в электронике, электротехнике и в некоторых других специальных целях. Цинк используют в виде растворимых анодов и защитных электроосажденных покрытий, а свинец — в виде анодов в системах защиты с наложенным током. Из кадмия получают высококачественные защитные покрытия на сталп. Олово, обладающее высокой стойкостью в морских средах, редко применяют в виде металла, но оно входит в распространенные сплавы. [c.160]


Смотреть страницы где упоминается термин Аноды для электроосаждения: [c.54]    [c.213]    [c.109]    [c.147]    [c.176]    [c.77]    [c.135]   
Коррозия (1981) -- [ c.336 , c.337 ]




ПОИСК





Смотрите так же термины и статьи:

Аноды

Электроосаждение



© 2025 chem21.info Реклама на сайте