Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

ОКСИД пропан воздух

    Природный газ одного из месторождений содержит метан (объемная доля 92%), этан (3%), пропан (1,6%), бутан (0,4%), азот (2%), оксид углерода (IV), пары воды и другие негорючие газы (1%). Какой объем воздуха потребуется для сжигания газа объемом 5 м (нормальные условия) Объемная доля кислорода в воздухе составляет 21%. Объем воздуха рассчитайте при нормальных условиях. [c.197]


    Природный газ одного из месторождений содержит метан (объемная доля 92%), этан (3%), пропан (1,6%), бутан (0,4%), азот (2%), оксид углерода (IV), пары воды и другие негорючие газы (1%). Какой объем воздуха потребуется для сжигания газа объемом 5 м (нормальные усло- [c.158]

    Фотометрия пламени — вид эмиссионного спектрального анализа, в котором источниками возбул<дения спектров являются пламена различных видов ацетилен — воздух, ацетилен — кислород, пропан — воздух, пропан — кислород, водород — воздух и др. Вследствие невысокой температуры в пламенах излучают легко и среднеионизующиеся элементы щелочные и щелочноземельные металлы, галлий, индий, магний, марганец, кобальт, медь, серебро и ряд других, причем их число растет с увеличением температуры пламени. В наиболее холодных пламенах, таких как, например, пропан — воздух, светильный газ — воздух излучают только атомы щелочных и щелочноземельных металлов. Вследствие невысокой температуры спектры, излучае-МЕле пламенами, состоят из небольшого числа спектральных линий, главным образом резонансных, что позволяет выделять характеристическое излучение элементов при помощи светофильтров и использовать простые и имеющие невысокую стоимость спектральные приборы — пламенные фотометры. Кроме атомных спектральных линий в спектрах пламен присутствуют полосы ряда в основном двухатомных молекул и радикалов С2, СиС1, СаОН и др. Некоторые из них используют в аналитических целях. Так, в случае элементов, образующих термически устойчивые оксиды, которые практически не диссоциируют в пламенах с образованием свободных атомов, молекулярные спектры являются единственным источником аналитического сигнала. Практически не атомизируются в низкотемпературных пламенах оксиды скандия, титана, лантана и других элементов, ирлеющих относительно невысокие потенциалы ионизации. Наиболее часто фотометрию пламени применяют для определения щелочных и щелочноземельных металлов. [c.35]

    Из жидких топлив наиболее перспективными являются метиловый и этиловый спирты, формальдегид, гидразин из газообразных—водород, оксид углерода (П), пары бензина, этилен, бутан, пропан и другие газообразные углеводороды, горючие газы (водяной, генераторный, доменный). В качестве окислителя применяют воздух или кислород и реже хлор, бром. [c.247]

    Четыре типа пламени ацетилен—воздух ацетилен—оксид азота(1) пропан—воздух пропан—оксид азота(1). [c.928]


    Воздух — пропан Воздух — бутан Аргон — водород Оксид азота(1) — Для пламени ок- Оксид азота(1) — пропан СИД азота (I)— ацетилен [c.106]

    При сгорании алканов на воздухе они окисляются до диоксида углерода и воды (на практике обычно не достигается полное сгорание, так что одним из продуктов окисления является оксид углерода). Жизнь современного человеческого общества неотделима от этого процесса. Получаемая с его помощью энергия используется для совершения работы (например, в двигателях внутреннего сгорания и дизелях) или для получения тепла (отопление метаном, газовые плиты на пропане и бутане, котельные на нефти). При полном сгорании углеводородов выделяется большое количество энергии, как видно из примера полного окисления метана  [c.119]

    Как упомянуто ранее, пламена являются старейшим источником излучения в АЭС. Пламя —это экзотермическая реакция между двумя (или более) элементами или соединениями в газообразной форме, одно из которых является горючим (ацетилен, пропан), другое — окислителем (воздух, кислород, оксид азота N20) [8.1-3-8.1-8]. Энергия выделяется в форме теплоты сгорания горючего. Пламена обычно горят при атмосферном давлении. Типичное уравнение реакции выглядит следующим образом  [c.17]

    Заслонки служат для регулирования подачи первичного и вторичного воздуха. Горелка опорожняется через трубопровод 14. Подача газа для разжигания осуществляется от баллона с пропаном. Фильтр для очистки воды имеет диаметр 800 мм и загружен слоем щебня и гравия высотой 800 мм. К технологическим недостаткам следует отнести то, что отходящие газы содержат токсичные продукты оксид углерода, оксид азота, формальдегид и пр. Поэтому для снижения концентрации этих загрязнений в воздухе до предельно допустимых требуется большое разбавление газов атмосферным воздухом. Себестоимость сжигания [c.291]

    Показано, что в пламени воздух—пропан—бутан чувствительность определения натрия повышается в 10 раз при подогреве распылительной камеры до 200 С [167]. Сопоставлены пределы обнаружения натрия методом эмиссионной и абсорбционной спектрометрии при использовании одной и той же аппаратуры [678]. Приведены пределы обнаружения натрия при испарении его солей с зонда [412, 413]. В пламени оксид азота(1)—ацетилен предел обнаружения натрия составляет 1-10 мкг/мл по Зх-критерию и 10 г при определении его эмиссионным методом. При использовании графитовой печи НОА-72 предел обнаружения натрия составил 10 г [660]. Применение графитовой кюветы и лазера на красителе родамин 6Ж снижает предел обнаружения натрия до 3-10 ат/см [933]. [c.120]

    В солях цезия определяют п-10 % натрия в пламени пропан-бутан—воздух [172, 400]. Отмечается, что при определении натрия в бихромате цезия в пламени ацетилен—воздух цезий является спектроскопическим буфером [826]. Нуль прибора устанавливают по раствору бихромата цезия, содержащему 2500 мг/л соли. При применении низкотемпературного пламени водород—воздух снижается фон по сравнению с пламенами ацетилен—воздух и ацетилен—оксид азота(1) [1107]. Предлагается при анализе КС1 сп. ч. раствор КС1 наносить на микрозонд, определение проводить в пламени ацетилен— воздух [414]. Этим методом определяли из навески 100—200 мкг КС1 [c.172]

    Пламя используют как атомизатор и источник возбуждения спектров в методе фотометрии пламени, а также как один из основных способов атомизации веществ в методе атомно-абсорбционного анализа (см. разд. 14.3). Схема основных процессов, протекающих в пламени, показана на рис. 14.4. Наиболее часто используются пламена смеси воздух—ацетилен (Т = 2100-2400 К) и оксид азота(1)—ацетилен (Т = 3000-3200 К), реже — пламена смесей воздух—пропан (Т = 2000-2200 К) и оксид азота(1)—пропан (Т = 3000 К). [c.363]

    Выход формальдегида несколько возрастает при замене воздуха чистым кислородом (табл. 21) одновременно увеличивается количество и других продуктов окисления. Доля формальдегида, образующегося при окислении бутана, несколько выше по сравнению с пропаном и изобутаном. Более высокая реакционная способность позволяет проводить реакцию при значительно более низких температурах, как правило, не выше 400—480°С. В результате этого удается в значительной мере избежать образования продуктов полного окисления, т. е. оксида и диоксида углерода. Однако селективность образования формальдегида мало отличается от окисления метанола, поскольку в силу самого строения молекул углеводородов Сг—С4 при их окислительной конверсии образуется практически весь ассортимент соответствующих альдегидов, кетонов, спиртов и т. д. Для преимущественного образования соединений того или иного класса успешно применяют различные многофункциональные катализаторы. [c.72]


    Источники пламени. Применяют пламя, для получения которого в качестве горючего используют ацетилен, пропан или водород, а в качестве окислителя — воздух, кислород или оксид азота (I), Выбранная газовая смесь определяет температуру пламени. ВоЗ душно-ацетиленовое пламя и воздушно-пропановое имеют низкую температуру (2200—2400 °С). Такое пламя используют для определения элементов, соединения которых легко разлагаются при этих температурах. Таких элементов большинство, и потому в дальней шем тексте, если нет специальных указаний, предполагается использование воздушно-ацетиленового пламени. Воздушно-пропановое пламя используют тогда, когда имеются затруднения в получе НИИ ацетилена такая замена осложняет работу, поскольку в техническом пропане имеются примеси, загрязняющие пламя. Прй определении элементов, образующих трудно диссоциирующие соа- [c.20]

    Сигнализатор (рис. 9.24) предназначен для измерения содержания суммы горючих газов (с градуировкой по метану, пропану, гексану, водороду, оксиду углерода или другому горючему газу по выбору потребителя) в воздухе. Датчик сигнализатора может применяться в сочетании с пробоотборными устройствами, в том числе многоканальными [18]. [c.727]

    Сигнализатор (рис. 9.40) предназначен для измерения содержания суммы горючих газов (с градуировкой по метану, пропану, гексану, водороду, оксиду углерода(П) или другому горючему газу по выбору потребителя) в воздухе. [c.752]

    Воздух — пропаи обедненная стехиометрическая обогащенная Воздух — ацетилен обедненная стехиометрическая светящаяся обогащенная Оксид азота(I) — ацетилен обедненная стехиометрическая обогащенная Воздух — водород стехиометрическая Оксид азота(I) — водород стехиометрическая Оксид азота (I) — пропан  [c.145]

    Сырьем является пропилен, очищенный от сернистых соединений и других олефинов. Можно применять и очищенную пропан-пропиленовую фракцию. Окислителем служит воздух или кислород, разбавленный азотом или водяным паром. Побочно образуются оксиды углерода, формальдегид, ацетальдегид, органические кислоты и полимеры. Катализаторами процесса являются закись и оксид меди на носителе (карбид кремния, керамика, пемза, оксид алюминия) промоторы — иод и селен. Температура процесса 350—400°С, давление до 1 МПа, время контакта 0,2—2 с. Наибольший выход акролеина достигнут на катализаторах такого состава 0,25% меди на пемзе или 0,1% меди на карборунде. [c.138]

    Пропан н-Бутан Этилен Пропилен Водород Сероводород Оксид углерода Диоксид углерода Воздух [c.101]

    Природный газ (пропан-бутан) Ацетилен Водород Ацетилен Ацетилен Воздух Воздух Кислород Кислород Оксид азота N20 1800 2200 2800 3100 3200 Щелочные металлы Щелочные и щелочноземельные металлы Щелочные, щелочноземельные и тяжелые металлы Ag, Си, Мп Тяжелые металлы (РЬ, Сг, Са, Ре, 8п) [c.162]

    Концентрация свободных атомов элемента зависит не только от его концентрации в анализируемом растворе, но и от степени диссоциации молекул, в виде которых он вводится в пламя или же образующихся в результате химических реакций, протекающих в плазме. Вследствие этого при атомно-абсорбционном определении элементов, дающих термически устойчивые оксиды, например алюминия, кремния, ниобия, циркония и других, требуются высокотемпературные пламена, например ацетилен — оксид азота (N20). Тем не менее в низкотемпературных пламенах (пламя пропан — воздух) атомизируется большинство металлов, не излучающих в этих условиях вследствие высоких потенциалов возбуждения их резонансных линий медь, свинец, кадмий,, серебро и др. Всего методом атомной абсорбции определяют более 70 различных элементов в веществах различной природы металлах, сплавах, горных породах и рудах, технических материалах, нефтепродуктах, особо чистых веществах и др. Наибольшее применение метод находит при определении примесей и микропримесей, однако его используют и для определения высоких концентраций элементов в различных объектах. К недостаткам атомно-абсорбционной спектрофотометрни следует отнести высокую стоимость приборов, одноэлемеитность и сложность оборудования. [c.49]

    Для создания аналитических пламен может быть использован ряд газовых смесей. Наиболее часто используют пламена пропан-воздух, ацетилен-воздух и ацетилен-кислород, которые обеспечивают температуры 2200, 2500 и 3300 К соответственно. Увеличение температуры пламени ацетилен-кислород по сравнению с пламенем ацетилен-воздух достигается благодаря отсутствию азота, поглощающего энергию. Могут быть использованы как стехиометрические, так и обогащенные, т. е. с избытком горючего, пламена, чтобы уменьшить образование оксидов определяемого элемента. Интересной особенностью пламени является то, что процесс этот самоподцерживающийся, до тех пор пока поступают горючее и окислитель. Другими словами, нет необходимости в подведении внешней энергии. Проба в жидком виде может быть введена в пламя, где она десольватируется, испаряется, диссоциирует и затем атомизуется, прежде чем будет возбуждена. [c.17]

    Тип шамени пропан - воздух, ацетилен - воздух, ацегален - оксид азота. Отсчет результатов анализа производится на регистррфующем потенциометре (процент поглощения) и на цифропечатающем устройстве (содержание). Питание анализатора — от источника переменного тока напряжением 220 В частотой 50 Гц, потребляемая мощность 3 гсВ-А. [c.436]

    Экономичность процесса в значительной степени зависит от возможности регенерации пропана и оксидов азота, присутствующих в газах, уходящих из абсорбера. Эти газы содержат —85% СзНе и 10% N0. В системе регенерации пропан выделяют из смеси путем компримировання и охлаждения или абсорбции керосином, в котором нерастворимы другие компоненты (N2, СО, СО2). К ос-таваемуся газу добавляют воздух, а образовавшийся диоксид азо- [c.349]

    В стальных баллонах (ГОСТ 949—73 Баллоны стальные малого и среднего объема для газов на Рр 20 МПа (200 кгс/см ) и ГОСТ 15860—70 Баллоны стальные сварные для сжиженных газов на давление ) перевозят и хранят не воспламеняющиеся и не ядовитые газы (азот, аргон, гелии и тпЛ в сжатом состоянии легковоспламеняющиеся газы в сжатом виде (водород, метан) и сжиженном состоянии (бутан, бутилен, изобутилен, винилхлорид, пропан, этан, этилен, окись этилена и др.), а также ацетилен, растворенный под давлением ядовитые газы (оксид и диоксид азота, Лтор, бромметан, (Ьосген, хлор, диоксид серы и др.), легковоспламеняющиеся и ядовитые газы ( оксид углерода, гидрид бора, дициан, сульфид водорода, трифторэтилен, хлорметан, триметиламин и др.), а также сжатый воздух и кислород. [c.80]

    Анализируемый р-р вводят в виде аэрозоля в пламя горючей смеси воздуха или МзО с углеводородами (пропаном, бутаном, ацетиленом). При этом р-ритель и соли определяемых металлов испаряются и диссоциируют на своб. атомы. Атомы металлов и образовавшиеся в ряде случаев молекулы их оксидов и гидроксидов возбуждаются и излучают световую энергию. Из всего спектра испускания выделяют характерную для определяемого элемента аналит. линию (с помощью светофильтра или монохроматора) и фотоэлектрически измеряют ее интенсивность, к-рая служит мерой конц. данного элемента. [c.631]

    Концентрацию горючих газов и взрывоопасных газов,, паров и пыли определяют с помощью газоанализаторов типа ПГФ2М1-И1А (метан), ПГФ2М1-ИЗГ (пропан- бутан), ПГФ2М1- Ч4А (водород). На ряде заводов применяют импортные и отечественные аналоги газоанализаторов. В частности, газоанализатор УГ-2 применяют для определения в воздухе концентрации вредных газов и паров сероводорода, сернистого ангидрида, хлора, аммиака, ацетона, бензина. Срок службы индикаторной трубы 1 мес с момента приготовления. Концентрацию определяют по длине окраски порошка после прокачки пробы воздуха. Масса прибора 1,5 кг. Прибор АМ-5 - аспиратор сильфонный, предназначен для экспресс-анализа четырех газов сероводорода, сернистого ангидрида, окиси азота, оксида углерода (СО). [c.428]

    По температуре вспьпики нефтепродукта судят о возможности образования взрывоопасных смесей его паров с воздухом. Различают нижний и верхний концентрационные пределы взрьшаемости смеси паров нефтепродукта с воздухом. Если концентрация паров нефтепродукта меньше нижнего предела взрываемости, взрьша не происходит, так как имеющийся избьггок воздуха поглощает выделяющееся тепло и препятствует возгоранию остальных частей горючего. При концентрации паров горючего и воздуха выше верхнего предела взрыва также не происходит, но из-за недостатка кислорода в смеси. Ацетилен, оксид углерода и водород характеризуются самыми широкими интервалами взрываемости водород 4-74 % (об.), пропан 2,1-8 % (об.), бензин 0,8-5,0 % /об.). [c.9]

    Экономичность процесса в значительной степени зависит от возможности регенерации пропана и оксидов азота, присутствующих в газах, уходящих из абсорбера. Эти газы содержат 85% СзНз и 10% N0. В системе регенерации пропан выделяют из смеси путем компримирования и охлаждения или абсорбции керосином, в котором нерастворимы другие компоненты (N2, СО, СО2). К оставшемуся газу добавляют воздух, образовавшийся диоксид азота улавливают водой или разбавленной азотной кислотой. При этом оксиды азота превращают в азотную кислоту, а остаточный газ сбрасывают в атмосферу. Регенерированные пропан и азотную кислоту смешивают со свежими реагентами и возвращают в нитратор. [c.336]

    Эти датчики в 1962 г. изобрел Н. Тагучи его фамилия вошла в название датчиков — TGS (Tagu hi Gas Sensor). Большинство TGS-датчиков сделаны на основе оксида олова, сопротивление которого в чистом (свежем) воздухе очень высоко, и сопротивление датчика резко снижается при попадании в воздух газов взрывоопасных веществ (метан, пропан, СО, водород и т. д.), паров органического происхождения (алкоголя, кетона, эфирного масла, бензола и т. д.) и многих друтих газов и примесей. [c.759]

    Не взрывоопасен при обычном атмосферном давлении, но имеет широкие концентрационные пределы воспламенения в смеси с воздухом (3—64 %). Обычно хранится в баллонах в виде раствора в ацетоне (диссаугаз). Образует нерастворимые взрывоопасные соединения с медью и серебром. При разбавлении Э. азотом, метаном, пропаном взрывоопасность уменьшается. Обычно в Э. содержатся весьма ядовитые примеси 0,03—0,1 % фосфина, 0,02—0,08 % сероводорода, около 0,1 % аммиака, а также арсин, силан и селеноводород, оксид углерода(1У) и др. С технической точки зрения допускается наличие в Э. 0,2 % фосфористых соединений в пересчете на РН.,, не более 0,15 % H S, не более 0,06% РНз и 0,001 % AsHg. См. также приложение. [c.70]

    Большое место в производственных и учебных химических лабораториях занимают работы с применением сжатых ижидких газов. Различные газы широко применяются в лабораторной практике в лабораториях различного профиля. В лаборатории неорганической химии используют кислород, азот, водород, хлор, углекислый газ, аммиак в лаборатории органической химии кроме этих газов используют этилен, пропилен, оксид этилена, оксид пропилена и некоторые другие в лаборатории аналитической химии - кислород, сероводород в лаборатории инструментальных методов анализа - азот, водород, гелий. Во многих лабораториях используется сжатый воздух. Иногда для газовых горелок использзоот баллонный газ (пропан). [c.15]

    Оксид углерода СО Пропан С3Н3 Воздух Хлор С12 Кислород О  [c.41]

    По ТУ 51-641 - 74 выпускают ПГС на основе гелия, аргона, азота, воздуха с содержанием микропримесеЙ (кислород, метан, водород, азот, оксид и диоксид углерода, аргон, пропан, неон, гелий). ПГС разделяют на три группы сложности по содержанию примесного компонента от 1 10 до 5 10 %, от 5 10 2 до 5 10 % и от 5 10 1% и выше. Допускаемое содержание примесного компонента 20% при концентрации 1 10"5-1 10 2%, 10% при концентрации 1 10 2 4,0% и 5% при концентрации более 4,0%. [c.62]


Смотреть страницы где упоминается термин ОКСИД пропан воздух: [c.128]    [c.369]    [c.857]    [c.940]    [c.48]    [c.750]    [c.87]   
Горение (1979) -- [ c.30 , c.32 , c.45 , c.47 , c.49 , c.65 , c.140 , c.155 ]




ПОИСК





Смотрите так же термины и статьи:

Пропан

Пропанои



© 2025 chem21.info Реклама на сайте