Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Методы обнаружения натрия

    Метод основан на фотометрировании дублета спектральных линий натрия 589,6 и 589,0 нм (3 5i/2—з/2 а = 2,1 эВ), излучаемых его атомами в пламени светильный газ — воздух. Факторы специфичности при определении натрия в присутствии калия, лития и кальция составляют соответственно л-10 , л-10 и /г-10 Предел обнаружения натрия Ы0 %- Метод ограничи- [c.41]


    Предел обнаружения натрия зависит от природы объекта, положения аналитической линии, типа спектрографа и может достигать при прямом определении 10 % [224]. Проецирование на щель спектрографа прикатодного слоя дуги постоянного тока позволяет значительно снизить предел обнаружения натрия [492, 590, 591]. При использовании аэрозольно-искрового метода анализа для определения до 5-10 % натрия в алюминиевых сплавах относительная погрешность составляла 10% [121]. При высоком коэффициенте концентрирования предел обнаружения натрия достигает —10 % и в ряде определений ограничен содержанием натрия в контрольных опытах [360, 492]. [c.98]

    МЕТОДЫ ОБНАРУЖЕНИЯ НАТРИЯ [c.30]

    Соли натрия (ионы натрия) окрашивают пламя горелки в желтый цвет. Это очень чувствительный метод для обнаружения натрия в соединениях. [c.173]

    Следует подчеркнуть, что успех в развитии физико-химических и физических методов применительно к определению натрия невозможен без изучения химических свойств натрия, поскольку задача значительного снижения пределов обнаружения натрия не может быть решена без предварительного отделения и концентрирования натрия либо отделения сопутствующих компонентов. [c.5]

    Способы обнаружения натрия капельным методом рассмотрены в книге [498], люминесцентным методом — в руководстве [457]. [c.30]

    Определение натрия е золоте [131]. Метод применен для определения натрия в золоте после его регенерации химическим путем. Его можно использовать также для контроля чистоты золота при его добыче и очистке. Предел обнаружения натрия 1-10" % при использовании аналитических линий Ка 589,592 нм — фон и Ка 588,995 нм — фон. Кроме натрия, можно определить данным методом также Си, Ag, Р1, Ве, Мп, Са, Mg, С(1, Ва, 81, Ге, Сг, N1, А1, 8Ь, В1, Со, РЬ, Мо, К и 8п. Спектры возбуждают в дуге переменного тока силой [c.101]

    Определение натрия в теллуре [122]. Метод применен для определения 5-10 —2-10 % натрия в техническом теллуре, предел обнаружения натрия З-Ю %. Эталоны готовят механическим смешиванием мелкодисперсных порошков чистых металлов с теллуром повышенной чистоты. Вначале примеси вводят в концентрации 0,1 — 1%, затем разбавляют в 10 раз чистым теллуром. После тщательного перемешивания и растирания стандартную смесь порошков применяют в дальнейшем для приготовления эталонов. Пробы и эталоны теллура смешивают с графитовым порошком в соотношении 5 1 и помещают в тонкостенные графитовые злектроды диаметром 3 мм и глубиной 2 мм. Помимо натрия, метод позволяет определять (с пределом обнаружения 10 —10" %) Ag, ВЬ, Mg, Сч, Р1, Ли, 81, А1, Ге, №, В1, 8п, 8Ь, РЬ, 1г, Ки, Са, Ва и 8е. При определении 5- 10 —2-10 % натрия выбрана аналитическая линия натрия 330,23 нм, линия сравнения теллура 317,51 нм при определении 5- 10 —2-10 % натрия интенсивность линии 588,995 нм измеряют относительно фона. Спектры фотографируют на спектрографе ИСП-28 с трехлинзовой системой освещения, источник возбуждения — дуга переменного тока, сила тока 2 А, экспозиция 30 с. Используют панхроматические пластинки или негативную фотопленку. [c.103]


    Определение натрия в кадмии [492]. Метод применен для определения 3-10 —3-10 % натрия в кадмии высокой чистоты, предел обнаружения натрия 1 Ю % при использовании аналитической линии 589,50 нм. Предварительно основу отделяют экстракцией хлороформом пиридин-иодидного комплекса. Вместе с натрием концентрируются и могут быть определены А1, Со, Са, Ге, В1, 1п, Оа, Mg, [c.104]

    Определение натрия в боре [405]. Метод основан на удалении бора в виде борнометилового эфира с последующим спектральным определением в растворе азотной кислоты. Используют аналитические линии натрия 330,30 или 330,23 нм, предел обнаружения натрия составляет 1-10 %, относительное стандартное отклонение равно 0,30. Для приготовления эталонных растворов берут растворимые в воде соли квалификации х. ч. Головной эталон содержит все определяемые примеси в концентрации 1-10 % каждого элемента в отдельности. Последовательным разбавлением головного эталона водой готовят серию эталонов, отличающихся по содержанию примесей в два раза. Метод позволяет определять также Mg, 81, А1, Си, РЬ, Ге, Р, Аз, Мо с пределом обнаружения >1-10 %. [c.106]

    Определение натрия в вольфраме [533]. Метод позволяет. определять 5-10 —10 % натрия в вольфраме и сплавах вольфрам—рений, предел обнаружения натрия равен Спектры возбуждают [c.110]

    При использовании в качестве источника света разряда с полым катодом микроколичества натрия в труднолетучих основах или веществах особой чистоты определяются наряду с большим числом примесей других элементов [218, 358] прямым методом или методом химико-спектрального анализа. Предел обнаружения натрия при этом может измениться на несколько порядков. [c.111]

    Атомно-абсорбционный метод анализа рекомендуют применять при определении относительно больших количеств натрия [67]. Предел обнаружения натрия не снижается при применении двухлучевого атомно-абсорбционного спектрофотометра. [c.114]

    Метрологические характеристики пламенно-фотометрических методов определения натрия. Чувствительность, предел обнаружения и другие метрологические характеристики пламенно-фотометрических методов определения натрия изучали в работах [68, 167, 264, 411-413, 415, 425, 660, 677, 678 684, 735, 760, 794, 933, 1054, 1073, 1078, 1271, 1272]. Исследовано влияние различных факторов на метрологические характеристики [167, 677, 1271, 1272]. Предложено 11078] математическое выражение для динамической области кон- [c.119]

    Показано, что в пламени воздух—пропан—бутан чувствительность определения натрия повышается в 10 раз при подогреве распылительной камеры до 200 С [167]. Сопоставлены пределы обнаружения натрия методом эмиссионной и абсорбционной спектрометрии при использовании одной и той же аппаратуры [678]. Приведены пределы обнаружения натрия при испарении его солей с зонда [412, 413]. В пламени оксид азота(1)—ацетилен предел обнаружения натрия составляет 1-10 мкг/мл по Зх-критерию и 10 г при определении его эмиссионным методом. При использовании графитовой печи НОА-72 предел обнаружения натрия составил 10 г [660]. Применение графитовой кюветы и лазера на красителе родамин 6Ж снижает предел обнаружения натрия до 3-10 ат/см [933]. [c.120]

    Для уменьшения расхода раствора предложено применять комбинированную горелку-распылитель со скоростью подачи раствора 25 мл/с [910]. Атомизатор — пламя водород—кислород, предел обнаружения натрия 0,008 мкг/мл. В работе [77] толщину поглощающего слоя увеличили втягиванием пламени пропан—бутан—воздух при помощи насоса в абсорбционную кювету. Обсуждено влияние различных факторов на градуировочные графики при определении натрия методом атомно-абсорбционного анализа [935, 991]. [c.127]

    Определение натрия в хлориде бария [270]. Метод применен для определения 0,01—0,05% натрия (и калия) в хлориде бария, предел обнаружения натрия 0,1 мкг/мл. Спектр возбуждают в пламени воздух—пропан—бутан и регистрируют на пламенном фотометре Цейсс (модель III) с интерференционными светофильтрами. Мешающее влияние фона бария устраняют добавлением в пробу нитрата алюминия. [c.129]

    Определение натрия в пентаоксиде ванадия [2711. Метод применен для определения 2-10 —2 10 % натрия (калия, кальция) в пентаоксиде ванадия предел обнаружения натрия составляет 0,05 мкг/мл, относительная погрешность определения 10—12%. Спектр возбуждают в пламени воздух—ацетилен и регистрируют спектрофотометром на основе спектрографа ИСП-51 с фотоэлектрической приставкой ФЭП-1. Используют резонансную линию натрия 588,995-589,593 нм. [c.130]

    Определение натрия в чугуне [26]. Метод применен для определения натрия в чугунах —передельном (0,004%), ковком (0,02%) и литейном (0,045%). Влияние железа устраняют экстракцией диэтиловым эфиром. Спектры возбуждают в пламени пропан—воздух, градуировочный график строят в интервале концентраций натрия 0,01—60 мкг/мл. Предел обнаружения натрия 10 мкг/мл. Использован метод ограничивающих растворов. [c.131]


    Описан атомно-абсорбционный метод определения натрия с пределом обнаружения 3 10 г по линии 589,0 нм с непламенной атомизацией вещества [704]. Анализируемое вещество помещают в цилиндрическую кварцевую камеру, которую устанавливают в лодочку из графита, танталовой или вольфрамовой фольги. Лодочку нагре- [c.132]

    Метод внутрирезонаторной атомно-абсорбционной спектрометрии. Внутрирезонаторная спектрометрия — новый вариант атомно-абсорбционного анализа с использованием лазерной техники. Этот метод применен для определения натрия с непламенной атомизацией пробы [933]. Кювету помещают внутрь резонатора — лазера на красителе родамин 6Ж. Концентрация красителя соответствует максимальной генерации в области линейного поглощения натрия для резонансного дублета 589,6—588,6 нм. Для определения натрия используют дифракционный спектрограф. Изучено влияние температуры кюветы и длительности накачки на предел обнаружения. Сравнивают данные для четырех лазеров, различающихся длительностью импульсов, полушириной светового импульса лампы накачки, областью генерации и длиной кюветы. При изменении температуры кюветы от 100 до 155° С предел обнаружения натрия изменялся от 12-10 до 82-10 мм рт. ст. Если кювета находится вне лазерного резонатора, то предел обнаружения натрия возрастает в 200 раз. Внутрирезонаторная атомно-абсорбционная спектрометрия является перспективным методом снижения предела обнаружения элементов. [c.133]

    Реакция Лассеня иногда оказывается непригодной это бывает в тех случаях, когда азот в органическом соединении связан настолько слабо, что при нагревании улетучивается еще до сплавления вещества и поэтому не вступает в реакцию с натрием и углеродом. Недавно Файгль описал очень чувствительный и надежный метод обнаружения азота. При нагревании любого сухого азотсодержащего вещества с пиролюзитом (а также с МпгОз, РЬз04, С02О3) образуются пары азотистой кислоты, окрашивающие фильтровальную бумагу, смоченную реактивом Грисса (смесь 1 %-ного раствора сульфаниловой кислоты в 30%-ной уксусной кислоте с 0,1 %-ным раствором а-нафтиламина в 30%-ной уксусной кислоте), в красный цвет. Методами капельного анализа можно обнаружить 0,2 цг органически связанного азота [c.5]

    Атомно-флуоресцентный метод позволяет определять 10 —10 г вещества в самых разнообразных объектах, а также локальные концентрации в светящемся облаке [158, 159]. В этом методе может быть использована бездисперсионная аппаратура. Для получения атомного пара применяют пламенные и непламенные атомизаторы, в качестве источника света — ксеноновые лампы СВД (предел обнаружения натрия 8 10 г). Лазерное возбуждение атомов натрия в пламени позволило определить на фоне загрязнений атмосферы 10 атомов в 1 см . Для наблюдения флуоресценции натрия используют чаще всего резонансные дублеты 589,0—589,6 и 330,23— 330,30 нм. [c.133]

    На предел обнаружения натрия влияют дробовой и фликкер-шумы пламени и рассеяние света лазера с непрерывным спектром. В этом методе предел обнаружения приближается к пределу обнаружения в атомно-эмиссионном методе. Для резонансной флуоресценции отношение сигнал/шум не возрастает при повышении мощности лазера до 1 кВт. Для нерезонансной флуоресценции высокая мощность приводит к снижению тушения флуоресценции. [c.134]

    Методы обнаружения натрия в настоящее время представлены химическими и физическими методами. Реакции обнаружения натрия малоселективны, требуется предварительное выделение натрия вли сопутствующих ионов. Поэтому большинство химических методов применяют после разделения ионов в систематическом ходе анализа. Более перспективны физические методы, основанные на способности солей натрия окрашивать пламя горелки в характерный желтый цвет. Существуют способы устранения влияния других щелочных металлов основа этих методов описана в главе VIII Спектральные методы определения натрия . По чувствительности они также превосходят химические методы. [c.30]

    Обнаружение в виде тронных ацетатов. Метод обнаружения натрия в виде КаМд(и02)з(СНзС00)9-а Н20 предложен в 1884 г. Штрен-Гом [752]. Реакцию обнаружения натрия в виде тройного ацетата Динка можно выполнять капельным методом [498]. В этом случае [c.31]

    Тиосульфат натрия можно оттитровать кулонометрически также с применением биамперометрического метода обнаружения к. т. т. Принципиальная схема индикационной цепи представлена на рис. 44. Через делитель напряжения 7 от источника постоянного тока 8 на индикаторные электроды 4 подают небольшое поляризующее напряжение (>100 мВ), До к.т.т. ток в цепи микроамперметра 5 отсутствует, поскольку в данных условиях в растворе отсутствуют вещества, способные к электрохимическому восстановлению на катоде ( г). [c.149]

    Локальный метод обнаружения течей является простым и основывается на хорошей электропроводности натрия. Устройство может включать два электрических контакта, которые закорачиваются при налличии натрия, или одного контакта, заземляющегося в случае утечки. Для локального обнаружения применяется также электропроводящая проволока, продетая через полые бусины из огнеупорного материала, которая укладывается вдоль труб или стенок резервуаров. Детекторы можно крепить к вентилям, к стенкам восстановительных резервуаров или внутри внешнего кожуха труб с двойными стенками. [c.389]

    Известны методы обнаружения калия, основанные па осаждении малорастворимых комплексных (двойных) сульфатов или тиосульфатов. Осаждение в виде 3K2SO4 612(804)3 или Кз[В((504)з] позволяет устанавливать до 0,3 мкг К в капле по образованию характерных кристаллов Мешают соли аммония, рубидия, цезия, щелочноземельных металлов, свинца Аналогично реагируют соли натрия, которые образуюг кристаллы иной формы, что дает возможность одновременно обнаруживать калий и натрий [26, 56, 75, 248, 250, 268, 328, 346, 724, 954, 1287, 1311, 1356, 1499, 1768, 1783, 2223, 2489, 2684] [c.15]

    Эта реакция лежит в основе широко используемого метода обнаружения шиффовых оснований в белках и введения изотопных меток. Например, можно использовать меченный изотопом альдегид или амин либо ввести радиоактивную метку, используя Н-содержащий боргидрид натрия (так называемый бортритид) для восстановления в реакции (7-39). Последующий гидролиз белка (кислотный или ферментативный) позволяет установить, с боковой группой какой аминокислоты был связан субстрат, а частичный гидролиз позволяет локализовать центр связывания в пептидной цепи. [c.144]

    Соединения натрия легко возбуждаются в низкотемпературном пламени светильный газ—воздух (температура равна 1870° С), окрашввая пламя в характерный желтый цвет. В аналогичных условиях пламя окрашивается в различные цвета от присутствия летучих соединений остальных щелочных и щелочноземельных элементов. В присутствии последних натрий удобнее обнаруживать с помощью спектроскопа прямого зрения, наблюдая линию натрия при 590 нм. Предел обнаружения натрия данным методом очень низок, поэтому натрий можно обнаруживать практически везде в воде, газе, реагентах. [c.35]

    Широко применяют химико-спектральные методы после концентрирования микрокомпонента или отделения основы. Химические основы методов весьма разнообразны, равно как и способы отделения. Используют физические и химические методы концентрирования примесей, в том числе и натрия методы фракционной дистилляции [161, 517, 665], отделение основы осаждением [195] или экстракцией [492]. Более полные сведения о применении химико-спектрального анализа для определения натрия в числе других элементов приведены в обзорах [195, 196]. В большинстве случаев используют резонансный дублет 589,6—589,0 нм дублет 330,23—330,30 нм используют редко [130, 405, 493]. Метод применим к анализу органических веществ после постепенного упаривания с угольным порошком [536], ароматических кремнийорганических соединений, диэтиламина и тетратиурамдисульфида после упаривания с сульфатом стронция (предел обнаружения натрия 3-10 %) [386]. Некоторые примеры применения химико-спектральных методов приведены в табл. 43. [c.104]

    Спектральные методы — наиболее селективные и чувствительные из имеющихся методов определения натрия. Их можно классифицировать по способу подготовки пробы к анализу (прямые и химикоспектральные), по способу регистрации сигнала (спектрографические и фотоэлектрические), по способу возбуждения (пламенные, электротермические, флуоресцентные, рентгеноспектральные и др.) Спектрографические прямые и химико-спектральные методы применяют для обнаружения натрия при групповом определении примесей, например в веществах особой чистоты. По пределам обнаружения, экс- [c.96]

    Описан эффект прикатодного усиления интенсивности спектральных линий элементов с низкими потенциалами ионизации [944]. Использование прикатодной области плазмы дуги постоянного тока позволяет значительно снизить предел обнаружения натрия. Так, при определении натрия в материалах на основе урана (пробу помещали в анод) он равен 5 10 % [590]. Такой же метод используют при анализе фосфатов [591]. Дуговой разряд стабилизируют с помощью КОН [43] или К2СО3 [132]. В последней работе имеются сведения о влиянии количества К2СО3 на интенсивность линий натрия. Изучено влияние хлоридов, фторидов и иодидов на определение натрия в AI2O3 [1189]. [c.98]

    При анализе микропроб применяют высокоточную импульсную аргоновую дугу, предел обнаружения достигает 0,5—1 нг натрия 1196]. В атмосфере азота предел обнаружения натрия понижается на полтора порядка [954]. Приведены полные сведения об определении натрия методом локального лазерного микроспектрального анализа в различных объектах с использованием двухступенчатой схемы лазерного пробоотбора с последуюпщм возбуждением спектров в электрическом источнике предел обнаружения натрия 10 г 1984]. [c.99]

    Определение натрия в висмуте [227]. Метод пригоден для определения натрия в висмуте и его соединениях после перевода в В120з. Спектры проб и эталонов фотографируют на спектрографе ИСП-51. Электроды угольные условия съемки щель 10 мк, источник — дуга переменного тока, сила тока 5 А, экспозиция 40 с, фотопластинки панхром.. Предел обнаружения натрия по линии 588,995 нм составляет 5-10 %. В отдельной пробе можно определить Mg, Са, Ва, А1, Т1, V, Сг, Мо, Мн, Ге, Со, N1, РЬ, Си, А , Аи, 2н, С(1, 1п, Т1, 8н, РЬ, 8Ь, Те с пределом обнаружения >2 10 %. [c.102]

    Определение натрия в титане [196]. Метод основан на концентрировании примесей удалением основы отгонкой после перевода в Т1С14 хлорированием. Коэффициент концентрирования составляет 20— 50, предел обнаружения натрия по линии 588,995 нм равен 1-10 %. Спектры проб и эталонов фотографируют на спектрографе ИСП-51 в дуге переменного тока силой 5 А, экспозиция 1 мин. Натрий определяют из отдельной навески. [c.106]

    Определение натрия в свинце [60]. Метод позволяет определять натрий в свинце и его соединениях после отделения основы осаждением в форме РЬ804. Вместе с натрием концентрируются и могут быть определены Ы, Mg, Са, А1, Т1, V, Сг, Мо, Мп, Ре, Со, N1, Си, Ад, 2п, С(1, 1п, 8п, 8Ь, Аз и В1. Натрий определяют в отдельной порции, используя аналитическую линию 588,995 нм. С учетом коэффициента концентрирования, равного 100, предел обнаружения натрия составляет 3 10 %. Спектр возбуждают в дуге переменного тока сила тока 5 А, экспозиция 1,5 мин. Регистрируют излучение на спектрографе ИСП-51, фотопластинка инфра 7бО . Угольные электроды  [c.107]

    Определение натрия в висмуте и его солях [227]. Метод основан на концентрировании примесей осаждением основы в виде В11з. Спектры возбуждают в дуге переменного тока, сила тока 5 А, экспозиция 40 с, фотопластинки панхром. Предел обнаружения натрия [c.108]

    Определение натрия в молибдене и его соединениях [197]. Метод основан на отделении основы осаждением а-бензоиноксимом и определении натрия из отдельной пробы. Источником возбуждения является дуга переменного тока, сила тока 5 А, экспозиция 1 мин, пластинки панхром. При использовании линии натрия 588,995 нм предел обнаружения натрия составляет 4-10 %, коэффициент концентрирования натрия равен 5. В отдельной пробе можно определить Мд, Са, Ва, А1, Т1, V, Сг, Мп, Ге, Со, N1, Са, Ag, 2п, С(1, 1п, 8п, 8Ь, РЬ, В1 с пределом обнаружения >2-10 %. [c.109]

    Подробно обсуждено влияние органических растворителей на результаты атомно-абсорбционного анализа сточных вод [803]. Показано, что если концентрация органических растворителей много меньше 0,1 %, то нет влияния на абсорбцию натрия в интервале концентраций 0,1—5 мкг/мл. Приведены данные об определении натрия методом атомной абсорбции при применении монохроматора высокого разрешения Span 101 [870]. Пределы обнаружения натрия при использовании линейчатого источника света — лампы с полым катодом — и источника сплошного излучения — дуговой ксеноновой лампы — [c.127]

    Определение натрия в ПАН-лаках [4351. Метод применен для определения натрия (и калия) в ПАН-лаках (10%-ный раствор полиак-рилнитрила в диметилформамиде), в ДМФА, смесях ПАН -Ь иод, ПАН -f- хинон. Предел обнаружения натрия в ДМФА 1 10 %, в ПАН-лаке — 2-10 %. При определении 1 10 % натрия относительное стандартное отклонение составляет 0,01—0,02. Спектры возбуждают в пламени воздух—пропан—бутан, регистрируют на [c.131]

    Для определения 10 г/л натрия в пламени использован лазер на красителе родамин 6Ж в метаноле с концентрацией 50 мг/л, имеющий широкую полосу пропускания 80 нм [887]. Описан атомнофлуоресцентный метод определения ряда примесей, в том числе и натрия, в водопроводной воде. Предел обнаружения натрия 2- 10" мкг/мл [1931. Сравнивались аналитические возможности атом- [c.134]


Смотреть страницы где упоминается термин Методы обнаружения натрия: [c.2]    [c.6]    [c.79]    [c.135]   
Смотреть главы в:

Натрий -> Методы обнаружения натрия




ПОИСК







© 2024 chem21.info Реклама на сайте