Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Кислород производстве ацетилена

    Делаются попытки усовершенствовать производство карбида кальция, однако это связано с большим расходом электроэнергии и сырья, высокими капиталовложениями и себестоимостью кроме того, подобные установки технологически трудноуправляемы. Было предложено, например, для получения необходимого тепла сжигать (в присутствии кислорода) часть кокса для уменьшения расхода электроэнергии. При этом образуется много окиси углерода, использование которой в процессе также может снизить себестоимость ацетилена. В настоящее время, однако, большую часть ацетилена получают старым методом (из карбида кальция). Карбид кальция обладает тем преимуществом, что из него получается ацетилен 97— 98%-ной концентрации, поэтому дальнейшая его очистка очень проста его легко транспортировать. Ацетилен же, полученный из ме-. тана (и других углеводородов), требует трудоемкой операции выделения его из газовых смесей и транспортирования в резервуарах под давлением. Критерием выбора конкретного процесса получения ацетилена из метана (или его гомологов) служат его основные характеристики (термодинамика, кинетика, механизм реакции). [c.99]


    Ацетальдегид на указанном производстве получался по реакции Кучерова — гидратацией ацетилена в сернокислой среде в присутствии солей двухвалентной ртути. Процесс осуществлялся по следующей схеме в гидрата-тор загружалась кислота и ртуть система продувалась азотом до содержания кислорода в отходящем азоте менее 1 % включался водокольцевой насос, и ацетилен, барботируя через слой контактной кислоты, реагировал с водой с образованием ацетальдегида. [c.224]

    Для выделения водорода из газов коксования и пиролиза нефти необходимы специальные установки низкотемпературного фракционирования, аналогичные тем, которые применяют при производстве кислорода. Этот метод выгоден, если одновременно выделяют также и другие газы (этилен, этан, ацетилен), которые затем можно перерабатывать. [c.215]

    Сырьем для производства аммиака является смесь азота и водо рода. Эту смесь получают разными способами. Наиболее распространенные из них газификация твердого и жидкого топлив с последующей конверсией окиси углерода, конверсия метана и других углеводородных газов, комплексная переработка природного газа в ацетилен и синтез-газ, фракционное разделение горючих газов, в частности коксового, методом глубокого охлаждения, разделение воздуха на азот и кислород с применением для этого глубокого холода и электрохимический способ получения водорода и кислорода. [c.151]

    Для предотвращения накопления опасных примесей прибегают к сливам жидкого кислорода, удорожающим производство, но и этот прием не исключает возможности взрывов. Наиболее эффективным методом является тщательная очистка разделяемого воздуха от вредных примесей, для чего иногда используют адсорбцию на силикагеле. При этом эффективно извлекается только ацетилен, но не алканы. Весьма эффективной очисткой является окисление ацетилена на катализаторах из окислов металлов при небольшом подогреве (150—180°С). [c.80]

    При производстве ряда важных продуктов из ацетилена, в частности хлоропрена, бутиндиола, к ацетилену предъявляют требования, ограничивающие содержание в нем кислорода (не более 0,005% (об.). Для безопасного производства указанных выше продуктов необходимо контролировать содержание кислорода в ацетилене. [c.227]

    При производстве кислорода загрязнение ацетиленом воздуха, засасываемого компрессорами, может привести к взрыву кислородных аппаратов, поэтому разрыв между зданиями ацетиленового производства и цехами разделения воздуха должен быть не менее 300 м, причем здания ацетиленового производства должны располагаться по отношению к этим цехам с подветренной стороны. [c.167]


    Площадку подготовительных работ размещают в соответствии с проектом производства работ в непосредственной близости от объекта монтажа и обеспечивают необходимыми подъездными путями для подачи оборудования. Рядом с площадкой подготовительных работ устраивают временные сооружения для складирования такелажных приспособлений, хранения мелких узлов и деталей кладовую для инструмента конторку для производителя работ необходимые бытовые помещения навесы для хранения баллонов с кислородом и ацетиленом. [c.34]

    Анализ содеря ния углеводородов, особенно ацетилена, в жидком кислороде очень важен для качества и безопасности производства жидкого кислорода. Поскольку ацетилен — наиболее критическая примесь, требования к контролю качества не позволяют использовать анализатор полного состава углеводородов и поэтому неотъемлемой частью такого контроля должен быть хроматограф. При этом важной частью анализа является дозирование, Главное затруднение заключается в проблеме испарения. Обычная система дозирования, применяемая в анализе СНГ, не годится, так как она изготовлена из нержавеющей стали, т. е. материала с довольно низкой теплопроводностью. Поэтому, если использовать нержавеющую сталь, углеводороды будут концентрироваться в испарителе, отдельные холодные места которого имеют температуру ниже —90°С. [c.126]

    Горение большинства веществ прекращается при снижении содержания кислорода в окружающей среде (азоте) до 12—16% [284] (или 11,0—13,5% [285]), а этилена и бутадиена — 10,0— 10,4% [286]. Исключение составляют вещества, обладающие широкой областью воспламенения, — водород, ацетилен, оксид углерода для них эта величина не превышает 5%, но в газах битумного производства они не присутствуют или присутствуют. практически в незначительных количествах. При хранении битумов в резервуарах пожаробезопасное содержание кислорода зависит от природы инертного газа (азота, водяного пара, диоксида углерода), т. е. флегматизатора, и составляет от 10 до 15% [209]. Эффективность действия,флегматизатора зависит от его свойств и пропорциональна отнощению теплоемкости к теплопроводности [287]. [c.176]

    Получение и очистка исходного этилена. Материалом для производства этилена на одном из заводов Германии является этан или ацетилен. Этан подвергают дегидрированию в специальных печах в присутствии кислорода воздуха приблизительно при 800 . Этилен получается по реакции [c.80]

    Ацетилен является эндотермическим соединением с энтальпией образования -1-227,4 кДж/моль. Поэтому, при сгорании его в кислороде выделяется большое количество тепла и развивается высокая температура, достигающая 3150°С. Это обусловило использование ацетилена для сварки и резки металлов, на что расходуется до 30% всего его производства. Вследствие высокой взрывоопасности ацетилен хранится и транспортируется в баллонах, заполненных древесным углем, или в растворе в ацетоне под давлением 1,5—2,5 МПа. [c.244]

    Свыше 60% всего промышленного кислорода используется в металлургии. При выплавке чугуна и стали (в доменном, кислородно-конверторном и мартеновском производствах) для интенсификации процессов окисления применяется кислородное дутье или дутье обогащенным кислородом воздухом. Кислород в смеси с ацетиленом используют также для сварки и резки металлов. Широкое применение кислород находит практически во всех отраслях химической промышленности. Кислород используют в лечебных целях в медицине (кислородные подушки, кислородные коктейли и др.). [c.359]

    Процесс получения ацетилена методом неполного сжигания, в котором сырьем являются метан из природного газа и 90—95% ный кислород, эксплуатируется в промышленном масштабе в США, Италии, а также в Германии. В этом процессе на каждую весовую часть ацетилена получают не менее 2 весовых частей газа синтеза (00 + На), поэтому описанный процесс применяют там, где одновременно имеется производство синтетического аммиака или синтетического метанола. Такое применение смеси СО и Иг более выгодно, чем использование ее в качестве энергетического топлива. Метод частичного сожжения углеводородного сырья можно рассматривать как вариант метано-кислородного процесса (гл. 3), в котором часть метана превращается в весьма ценный ацетилен. [c.279]

    Ацетилен. Ацетилен служит исходным сырьем для синтеза большого числа продуктов нефтехимической промышленности. Растущий из года в год спрос на ацетилен вызвал необходимость разработки новых экономичных способов его получения. В настоящее время в промышленности освоен способ производства ацетилена из природного газа — термоокислительным пиролизом метана, т. е. расщеплением метана за счет сжигания части газа с кислородом, подаваемым в процесс. [c.29]

    С промышленной точки зрения метан является более перспективным исходным материалом для синтеза цианистого водорода, чем ацетилен. Реакции (1) и (2) весьма эндотермичны, и в случае применения обычного трубчатого реактора интенсивный подвод большого количества тепла для поддержания температуры 1500° представляет в промышленных условиях очень значительные трудности. Выше упоминалось о проведении реакции в электрической дуге как об одном из решений этой проблемы. Вторым решением является сожжение части реагирующих газов внутри реактора. Последний способ был применен при осуществлении реакции (2) и используется сейчас при промышленном производстве цианистого водорода из нефтяного сырья. Этот метод разработан в начале тридцатых годов Андрус-совым [6], который пропускал при 1000° над платиновым катализатором смесь аммиака, кислорода и метана, полученного гидрированием угля или из коксовых газов. В смеси должно находиться достаточное количество кислорода, чтобы могла протекать реакция [c.376]


    Применение кислорода весьма многообразно. Его применяют для интенсификации химических процессов во многих производствах (например, в производстве серной и азотной кислот, в доменном процессе). Кислородом пользуются для получения высоких температур, для чего различные горючие газы (водород, ацетилен) сжигают в специальных горелках. Кислород используют в медицине при затрудненном дыхании. [c.455]

    Окислители, имеющие большое значение в технике и лабораторной практике. Кислород. Применяется для интенсификации производственных процессов в металлургической и химической промышленности (в доменном процессе, в производстве серной и азотной кислот и т.д.). Кислород используется в смеси с ацетиленом для получения высоких температур (3500 °С) при сварке и резке металлов. Кислород широко применяется в медицине. Вдыхание 40—60 %-ной смеси кислорода с воздухом ускоряет процессы окисления в организме, при этом уменьшается нагрузка на сердце и легкие. Мозг и сердце — основные органы управления нашим организмом — являются и основными потребителями кислорода, доставляемого кровью. Причем мозг потребляет почти в 20 раз больше кислорода, чем сердце. Лучшее средство борьбы с кислородной недостаточностью — пребывание на свежем воздухе. [c.128]

    В настоящее время основным сырьем в производстве аммиака являются природный газ, попутные газы нефтедобычи, жидкие углеводороды и коксовый газ. Доля аммиака, получаемого из твердого топлива и электролитического водорода, все более снижается. При современных методах получения аммиака все большее значение приобретают процессы очистки газа. Из технологических газов на разных стадиях получения аммиака удаляют такие примеси, как сернистые соединения, двуокись и окись углерода, ацетилен, окислы азота, кислород и др. Эти примеси, содержащиеся в газе в различных концентрациях, по-разному влияют на процесс. Например, сернистые соединения оказывают сильное влияние на все катализаторы, применяемые в синтезе аммиака серосодержащие соединения, присутствующие в исходном углеводородном сырье, ухудшают работу катализаторов конверсии метана, что приводит к повышению температуры процесса и увеличению расхода кислорода. При использовании наиболее экономичного способа производства аммиака, который основан на методе бескислородной каталитической конверсии метана в трубчатых печах, содержание сернистых соединений в природном газе не должно превышать 1 мг/м . [c.7]

    Окисление ацетиленовых углеводородов также ле представляет пока самостоятельного синтетического интереса. Каталитическое окисление самого ацетилена на практике применимо только при крупномасштабном производстве жидкого кислорода, в процессе которого ацетилен как примесь из атмосферы должен быть удален полностью. Удаление ацетилена совершается путем окисления на специальных долго и безупречно четко работающих катализаторах— Промотированных гопкалитах состава 60%МпОг + 40%СиО с примесью от 1 до 10% окиси серебра (см. [262]). [c.353]

    Описание процесса (рис. 20). Основой процесса является новая конструкция горелки-реактора для получения ацетилена. Ацетилен образуется в результате реакции частичного сгорания. Кислород и природный газ предварительно смешивают и подогревают в специальной печи до более высокой температуры, чем в других известных процессах производства ацетилена. Нагретая смесь подается в реактор оригинальной конструкции. Часть сырья сгорает с кислородом, выделяя тепло, необходимое для крекинга остального количества сырья до ацетилена и водорода. Для сохранения [c.42]

    При пиролизе и дегидрировании метана можно получать ацетилен, сажу и водород. При конверсии метана водяным паром или водяным паром и кислородом получают синтез-газ (СО-Ь -ЬНг) —сырье, используемое для дальнейшего органического синтеза, а также в отдельности чистую окись углерода и водород, которые применяют для процессов гидрирования и синтеза аммиака. Аммиак идет на синтез мочевины, представляющей ценный продукт для производства пластмасс и эффективное удобрение. [c.21]

    В последние годы в промышленности широко применяется получение ацетилена нри неполном горении метана в кислороде. По технико-экономическим показателям этот процесс является одним из наиболее эффективных процессов получения ацетилена из метана. В Советском Союзе он внедряется на ряде заводов на основе переработки природного газа и последующего использования отходящих газов Для производства аммиака и метанола. Образующийся при неполном окислении метана в кислороде ацетилен является термодинамически неустойчивым он легко разлагается на углерод и водород, а также взаимодействует с углекислотой и водяным паром с образованием окиси углерода и водорода. Схема процесса приводится на рис. V. 2. Сырье (природный газ или метан), не содержащее окиси углерода, водорода и высших углеводородов (так как в противном случае оно преждевременно воспламенится), поступает через подогреватель 1, где нагревается до 600° С, в верхнюю часть реактора 3 (в смесительную камеру горелки), куда подается также подогретый до той же температуры кислород в количестве до 65 объемн. % от метана. В результате процесса горения температура в реакторе 3 поднимается до 1500° С продукты реакции охлаждаются до 80° С орошением водой. [c.148]

    Для предупреждения взрыва газов в аппаратуре, в рабочих помещениях и наружных установках производства ацетилена из метана предусматривают сигнализацию о достижении температуры компримируемого. ацетилена-концентрата 90 °С и систему автоматического отключения компрессора при температуре газа 100°С. Вакуум-насосы и вакуум-компрессоры снабжают устройствами постоянного автоматического контроля содержания кислорода. При содержании кислорода в ацетилене 0,2% (об.) сигнализация срабатывает. В помещениях, опасных с точки зрения выделения газа, устанавливают газоанализаторы. Сигнализаторы наличия горючих газов должны настраиваться на концентрацию 20% от нижнего предела взрываемости. [c.33]

    К техническим газам относятся кислород, водород, азот, двуокись углерода и ацетилен. Эта отрасль включает государственные предприятия, находящиеся под управлением частных фирм, но не включает чисто государственных предприятий, поскольку их продукция составляет только I % общего производства [235]. [c.440]

    От места производства сварочных работ, источников открытого огня и сильно нагретых предметов переносные ацетиленовые генераторы, а также баллоны с ацетиленом и кислородом должны устанавливаться на расстоянии не менее 10 м баллоны с кислородом от ацетиленовых генераторов и баллонов — на расстоянии не менее 5 м. [c.92]

    Выбор схемы автоматического регулирования должен производиться на основе учета реальных потребностей и возможностей станции. При этом необходимо иметь в виду, что при производстве ацетилена размещение обычных электрических устройств и приборов внутри взрывоопасных помещений станции является недопустимым. В связи с этим для автоматических устройств наиболее предпочтительны гидравлические, пневматические и механические системы регулирования. В случае пневматических систем необходимо их заполнять газом, инертным по отношению к ацетилену и кислороду, например, азотом или углекислотой. [c.86]

    Этилен и пропилен для производства полимеров и сополиме ров должны быть исключительно чистыми, так как примеси (водород, окись углерода, метан, углеводороды С —С5, кислород, ацетилен и вода) ухудшают свойства полимеров и сополимеров. [c.168]

    В г. Кливленд и его пригородах развито производство основных неорганических и органических продуктов, а также лакокрасочных материалов. В г. Аштабьюла вырабатывают карбид кальция, хлор, каустическую соду, кислород, азот, ацетилен. Заводы по производству неорганических продуктов связаны трубопроводами. Транспортировка по ним азота, кислорода, ацетилена, соляной кислоты обходится на - "35% дешевле, чем автомобильным транопортом [19]. [c.516]

    Для предупреждения взрыва газов в аппаратуре, в рабочих помещениях и наружных установках производства ацетилена из метана предусматривают сигнализацию о достижении температуры компримируемого ацетилена-концентрата 90 °С и систему автоматического отключения компрессора при температуре газа 100°С. Вакуум-насосы и вакуум-компрессоры снабжают устройствами постоянного автоматического контроля содержания кислорода. При содержании кислорода в ацетилене 0,2% (об.) сигнализация срабатывает. В помещениях, [c.33]

    Ацетилен — бесцветный газ. Из-за присутствия в нем примесей он обладает резким специфическим запахом и сладковатым вкусом. Ацетилен применяется в промышленности для газопламенной обработки металлов, а также в качестве сырья для различных химических производств. Ацетилен легче воздуха и кислорода. 1 его при температуре 20° С и давлении 1 ата весит 1,09 кг, 1 воздуха при тех же условиях весит 1,33 кг, а 1 кислорода— 1,41 кг. При температуре 0°С и давлении I ата 1 ацетилена весит 1,179 кг. Плотность его по отношению к воздуху 0,91. При температуре —83,6° С и давлении 1 ата ацетилен переходит в бесцветную, легко подвижную, сла-бопахнущую жидкость. При температуре —85° С он переходит в твердое состояние. Жидкий и твердый ацетилен взрывчаты, [c.21]

    При эксплуатации взрывоопасных производств неоднократно происходили взрывы в результате воспламенения огнеопасных веществ. В ряде случаев взрывы были вызваны проскоком газов, воспламенявшихся в присутствии кислорода. В производстве ацетилена, а также в ряде других производств, в которых присутствует ацетилен, особую опасность представляет образование ацети-ленистой меди, которая на воздухе может взорваться. Поэтому з производствах, связанных с применением газовых фракций, содержащих ацетилен, не допускается применение оборудования и деталей из меди. В процессах, связанных с переработкой ацетилена на. медьсодержащем катализаторе, принимают другие меры, исключающие образование ацетиленидов меди. Например, для предупреждения образования металлической меди и контакта ее с ацетиленом процесс ведут в кислой среде солей меди. [c.337]

    При проектировании н эксплуатации предприятий особое внимание должно уделяться системам сжигания ацетилена и ацетиленсодержащих газоз. Ацетилен, являясь эндотермическим соединением, легко разлагается п при определенных условиях способен к взрывчатому разложению в отсутствие кислорода. Эта характерная особенность, а также широкий диапазон концентрационных пределов воспламенения с кислородом делают ацетиленсодержащие газы особенно опасными и требуют соблюдения дополнительных мер безопасности при их сжигании на факелах. Однако характерные особенности взрывоопасных и детонационных свойств ацетилена не всегда учитываются. Поэтому при эксплуатации производств, связанных с получением и переработкой ацетиленсодержащих газов, происходит большое число аварий. Взрывы ацетиленовоздушных смесей происходили в аппаратуре и трубопроводах факельных систем. Известны случаи разложения ацетилена со взрывом в факельном стволе и прогара ацетиленопроводов на участках между стволом и огнепреградителем. Отмечены случаи загорания н разложения со взрывом в системе, приводившие к разрыву шпилек и отрыву штуцеров в верхней части огнепреградителя. [c.212]

    Метан и кислород подогревают до 600 С в трубчатых печах 1 и 2, обогреваемых газом, соответственно, и поступают в реактор 3. Из реактора пирогаз с температурой после закалки водой 80°С проходит полый, орошаемый водой, скруббер 4 и мокрый электрофильтр 5, в которых из газа осаждаются сажа и смола. Затем пирогаз охлаждается водой в холодильнике непосредственного смешения 6, промывается в форабсорбере 7 небольшим количеством диметилформамида (ДМФА) и поступает в газгольдер 8. Вода, стекающая из реактора 3, скруббера 4 и электрофильтра 5, содержащая сажу, поступает в отстойник 9, из которого водный слой возвращается в реактор для закалки, а собранная сажа с примесью смолы направляется на сжигание. Газ из газгольдера 8 сжимается в компрессоре 10 до давления 1 МПа и подается в абсорбер 11, где из него ДМФА извлекается ацетилен. Непоглощенный газ, состоящий из водорода, метана и оксидов углерода, поступает в скруббер 12, орошаемый водой, в котором из газа улавливается унесенный газом ДМФА. Оставшийся газ используют как топливо или в качестве синтез-газа. Раствор ацетилена в ДМФА из абсорбера 11 проходит дроссель 13, где давление снижается до 0,15 МПа, и поступает в десорбер 14. Десорбированный из раствора ацетилен промывается в скруббере /5 водой и выводится с установки. Основным аппаратом в производстве ацетилена окислительным пиролизом метана является реактор. [c.256]

    Ацетилен получают из метана методом частичного сожжения последнего в токе кислорода. В этом процессе наряду с ацетиленом образуются окись углерода и водород, являющиеся сырьем для синтеза аммиака, метилового спирта и реакции Релена. Отпускная цена на ацетилен зависит от того, какой именно продукт предполагается получать в основном по этому процессу ацетилен или водород. Во всяком случае, процесс частичного сожжения всегда применяют в сочетании с установками, на которых могут быть использованы для химических синтезов другие получающиеся в результате частичного сожжения газообразные продукты. Этот процесс используют в США, Италии и Германии. Даже в США ацетилен из метана составляет всего лишь 10% общего производства ацетилена в этой стране. При этом в США производство ацетилена из метана методом частичного сожжения дислоцируется только в штатах Техас и Луизиана, где условия для этого исключительно благоприятны. [c.406]

    Кроме указанных областей применения ацетилен широко ис1юльзуется при автогенной сварке металлов, так как горение ацетилена в смеси с кислородом дает температуру выше ЗОООХ. Ацетилен находит широкое применение в качестве исходного сырья для многочисленных синтезов, из которых наиболее важное значение имеют производства синтетического каучука, пластических масс, этилового спирта, уксусной кислоты и др. [c.142]

    K.— серебристо-белый металл, оченьмягкий, легко режется ножом, В соединениях проявляет степень окисления +1. Химически К. очень активен. На воздухе быстро окисляется. Энергично соединяется с галогенами, образуя соответствующие соли. С серой образует сульфид КгЗ. Бурно взаимодействует с водой и кислотами с выделением водорода. К. энергично реагирует со многими органическими соединениями (со спиртами образует алкоголяты на холоде взаимодействует с ацетиленом с образованием КНСг). Металлический К. применяют для получения пероксида калия К2О2, используемого для регенерации кислорода. К. служит катализатором при получении некоторых видов синтетического каучука. Сплав К- с Na используется как охладитель в атомных реакторах и как восстановитель в производстве некоторых металлов (титана). Соли К. (КС1 и др.) применяют как калийные удобрения. См. также Калия соединения. [c.60]

    При разработке средств противоаварийной защиты следует всесторонне анализировать неполадки и аварийные ситуации, происходивщие при эксплуатации данного или подобного процесса. Например, при эксплуатации процессов в производстве ацетилена термоокислительным пиролизом метана были выявлены характерные аварии. Установлено, что многие из них связаны с повышением содержания кислорода в газах пиролиза с последующим их взрывом в аппаратуре, загоранием ацетилена в трубопроводах в момент сброса взрывоопасных газов на факел, подсосом воздуха в аппаратуру с ацетиленом, загоранием полимеров при их выгрузке и транспортировании из испарителей. [c.114]

    При газовой сварке должны применяться сварочная проволока по ГОСТ 2246—70 марки СВ-08А, СВ-08ГА с диаметрами 0,3 0,5 0,8 1 1,2 1,4 1,6 2 2,5 3 4 5 6 8 10 12 мм кислород технический по ГОСТ 5583—78 ацетилен в баллонах по ГОСТ 5457—75 или ацетилен, получаемый на месте производства из карбида кальция по ГОСТ 1460—81. [c.123]

    Учитывая большой диапазон концентрационных пределов воспламенения смесей ацетилена с воздухом и кислородом, а также его особую склонность к детонации и взрывчатому термическому разложению в отсутствие окислителей, трубопроводы ацетилен-содержащих газов факельных систем целесообразно предусматривать максимально короткими. При значительной протяженности ацетиленопроводы необходимо оснащать огнепреградителями или другими средствами локализации распространения пламенп и взрыва. Трубопроводы сбросных газов, как правило, следует распо- пагать с уклоном не менее 0,002 по ходу газа или 0,003 против хода газа. Для трубопроводов сбросных газов факельной установки в пределах производства, цеха или технологической установки рекомендуется уклон в сторону факельного ствола. При размещении факельной установки на аппаратах или перекрытиях зданий трубопровод сбросных газов может иметь уклон в сторону технологического оборудования. [c.215]


Смотреть страницы где упоминается термин Кислород производстве ацетилена: [c.214]    [c.214]    [c.171]    [c.29]    [c.334]    [c.214]    [c.44]    [c.171]   
Курс технологии связанного азота (1969) -- [ c.76 ]




ПОИСК





Смотрите так же термины и статьи:

Кислород производство



© 2025 chem21.info Реклама на сайте