Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бутадиен дегидрогенизация

    Наиболее универсальным сортом синтетического каучука является сорт ОН-З, годовое производство его в 1953 г. составило около 750 ООО Он получается полимеризацией в водной эмульсии системы из 78 частей бутадиена-1,3 и 22 частей стирола. Стирол может быть заменен метил-производными стирола, а именно — винилтолуолом. Бутадиен получается из нефти и из этилового спирта,-а стирол из бензола и этилена с последующей термической дегидрогенизацией. [c.210]


    Бутадиен получают при дегидрогенизации бутана на катализаторе—активированной окиси алюминия, пропитанной окисью хрома в количестве 18—20%, при температуре 608 °С и давлении 125 мм рт. ст. Объемная скорость от 1 до 3 Продолжительность рабочего цикла 8—10 мин. Катализатор регенерируется воздухом. [c.331]

    К продуктам дегидрогенизации предъявляются высокие требования в отношении их чистоты. В частности, для использования бутадиена его чистота должна быть от 96 до 99%. Между тем основные компоненты продуктов пиролиза— бутадиен, бутилены и н-бутан — имеют близкие точки кипения и обычного фракциони- [c.71]

    Эта селективность является функцией поверхностной плотности активных центров обоих типов и, следовательно, зависит от предварительной обработки (дегидратация, восстановление, окисление) такие окислы можно назвать бифункциональными катализаторами. Однако, согласно более общепринятой терминологии, это название употребляют только о-случаях, когда оба типа активных центров участвуют в двух (или более) последовательных стадиях заданной реакции, например при дегидрогенизации метилциклопентана до бензола (изомеризация и дегидрогенизация) или конверсии этанола в бутадиен (дегидратация и дегидрогенизация). [c.60]

    Наличие а продуктах пиролиза этилена столь высокореакционноспособных углеводородов, как бутадиен и бутилен, приводит к образованию ряда вторичных продуктов. Этому же способствует и присутствие свободных радикалов. Взаимодействие бутадиена с этиленом приводит к образованию циклогексена, дегидрогенизацией которого получается бензол  [c.415]

    Последний из перечисленных способов применяется при дегидрогенизации бутана в бутадиен. Например, в первой фазе по эндотермической реакции получают углерод, который оседает на катализаторе. Во второй фазе происходит окисление этого углерода путем введения соответствующего агента, и температура в реакционном пространстве повышается. Этот метод тем эффективней, чем короче периоды работы. [c.253]

    Подобная система реактор — регенератор применяется также при дегидрогенизации бутана в бутадиен. [c.315]

    Константа равновесия при дегидрогенизации бутена в бутадиен [c.14]

    Основньш направлением является распад бутана на метан и пропилен. В два раза медленнее протекает распад бутана на этан и этилен. Подчиненное значение имеет дегидрогенизация бутана. В результате последней реакции образуются все три изомерных бутилена, а именно 1-бутилен и оба 2-бутилена (цис- и транс-). Наибольшее количество образуется 1-бутилена. Часть последнего в результате дальнейшей дегидрогенизации превращается в бутадиен. [c.52]


    Непредельные углеводороды могут быть получены из предельных путем каталитического отщепления водорода (реакция дегидрирования, или дегидрогенизации). Например, из содержащегося в попутном нефтяном газе этана получают этилен, а из бутана — бутадиен  [c.563]

    Бутадиен получают также дегидрогенизацией бутана или бутилена  [c.311]

    Дегидрогенизация бутана в бутадиен возможна также двумя путями 1) при высокой температуре для практически полного превращения бутана выход бутена при этом составляет 70% бу- [c.296]

    Каталитическая дегидрогенизация бутана и бутена в бутадиен была рассмотрена выше. Этот путь получения бутадиена кажется экономически наиболее выгодным. [c.406]

    Каталитическая дегидрогенизация бутилена в бутадиен. [c.212]

    Значение пластмасс и некоторых продуктов органического синтеза существенно возрастет в будущем, хотя основным источником сырья для их получения пока является нефть с очень высоким ИИР (13,1%). Положение может быть изменено к лучшему, если удастся сократить расходы нефтепродуктов для топливных целей. В настоящее время на нефтехимические синтезы расходуется 5—67о всей нефти, но к-2000 г. эта доля возрастет до 15%. Следует отметить, что разведанные запасы нефти сейчас оцениваются величиной 120 млрд. т. Но предполагается, что к 2000 г. эти запасы будут расширены до 270 млрд. т. В современном нефтехимическом синтезе в основном используются низшие ненасыщенные ациклические и ароматические углеводороды. Эти соединения получают пиролизом газообразных парафинов, легких нефтяных фракций, а в последнее время тяжелых фракций и даже самой нефти. Современные установки для пиролиза укрупнены настолько, что могут производить от 500 до 700 тыс. т в год ненасыщенных углеводородов. В результате переработки нефти получают много продуктов, среди которых важнейшими являются низшие олефины и диолефины (этилен, пропилен, бутадиен и изопрен), ароматические соединения (бензол, толуол, ксилол) и газовая смесь оксида углерода (П) с водородом. Эти вещества — исходное сырье для многих тысяч промежуточных и конечных продуктов, некоторые из них указаны на рисунке 8. Переработка алифатических, алициклических и ароматических углеводородов осуществляется с помощью таких процессов, как дегидрогенизация, окисление, хлорирование, сульфирование и т. д. [c.71]

    Бутадиен, полученный каталитической дегидрогенизацией, свободен от производных ацетилена, наличие которых делает невозможным дальнейшую полимеризацию бутадиена над металлическим натрием. [c.242]

    Отсюда свободная энергия дегидрогенизации бутена-1 в бутадиен--1,3 следующая  [c.48]

    Конкретным примером сложной равновесной реакции является реакция каталитической дегидрогенизации н-бутана в бутен-1 и последнего в бутадиен-1,3. [c.181]

    При многочисленных реакциях углеводородов на катализаторе в заметных количествах образуются углеродистые отложения, называемые коксом. К таким реакциям относятся крекинг, риформинг, гидроочистка, дегидрогенизация. Непрерывное накопление отложений приводит к столь значительному снижению активности, что возникает необходимость регенерации катализатора. Содержание кокса на катализаторе может достигать заметных величин в течение нескольких минут (каталитический крекинг, дегидрирование бутана в бутадиен) или в течение нескольких месяцев (каталитический риформинг). [c.216]

    ДЕГИДРОГЕНИЗАЦИЯ (дегидрирование), отщепление водорода от молекулы орг. соединения. Обычно приводит к образованию двойной связи (С=С, С=0 и др.). Протекает в присут. тех же катализаторов, что и гидрогенизация, но при более высоких т-рах (300—550 °С) н более низких давл. (ог < 0,1 до 5 МПа). В пром-сти Д. этана получают этилен, Д. этилбензола — стирол, м-бутана (или м-бутенов)— бутадиен-1,3, изопропанола — ацетон и др. Д.— важная стадия многих нефтехим. процессов, напр, термич. крекинга, каталитич. риформинга. См. также Окислительная дегидрогенизация. [c.148]

    Огромное практическое значение имеет реакция дегидрогенизации бутилена в бутадиен, который служит сырьем для производства синтетического кау- [c.16]

    Бензол при алкилировании этиленом и дегидрогенизации получаемого этилбензола дает стирол, служащий одним из исходных углеводородов для получения синтетического каучука. Другим углеводородом, легко приготовляемым для превращения в синтетический каучук при полимеризации в чистом виде или совместно со стиролом, является бутадиен. Этот последний тип синтетического каучука в сравнении с натуральным каучуком обладает приблизительно на 30% большей сопротивляемостью износу и большей прочностью. [c.719]

    Дициан реагирует с диенами с сопрян епной системой двойных свя- зей, присоединяясь в положение 1,4 одной из С1 -групп это можно рассматривать как особый случай реакции Дильса-Альдера. Так, например, ициан и бутадиен дают 2-цианопиридпн реакция эта сопровождается дегидрогенизацией. Таким образом, выделение водорода при проведении реакции в температурных пределах 320—450° приводит к предположению, что нормальный продукт реакции Дильса-хАльдера является нестойким 114]  [c.379]


    Для процесса дегидрогенизации бутиленов в бутадиен разработано несколько катализаторов. Фирма Дау кемикел компани разработала катализатор из фосфата кальция и никеля. По со-обгцению фирмы в промышленных условиях при глубине превращения 35% выход бутадиена на превращенные бутилены 90%. Фирма Филлипс петролеум раньше применяла промотированный бокситовый катализатор, пропитанный перекисью бария. На этом катализаторе выход бутадиена из бутиленов в лабораторных условиях составлял 85% при 20%-ной их конверсии и 72% при 40%-ной конверсии. В заводских условиях получен более низкий выход, равный 70—80% при 20—25%-ной конверсии. [c.71]

    Для объяснения выходов ароматики и конденсированных систем при крекинге были использованы положения этиленовой теории с тем только отличием от последней, что бутадиен как промежуточный продукт на пути превращения в ароматику и конденсированные соединения сам возникаег вследствие полимеризации этилена с последующей дегидрогенизацией бутилена до бутадиена. Шестичленные ненасыщенные циклические углеводороды образуются в результате реакций бутадиена с этиленом. Нафталин является продуктом конденсации бензола с бутадиеном, а нз нафталина аналогичным путем могут получаться антрацен и фенантрен [8]. [c.18]

    DowType B [ agNi(P04)g] - катализатор дегидрогенизации, стабилизированный окисью хрома /8/. Отличительная способность - высокая селективность по отношению к бутадиену (80-90%) при превращении за проход 40-50% (на разложенный бутилен). Высокая селективность, вероятно, достигается за счет большой величины отношения концентрации водяного пара к сырью в исходной смеси (18 1), а также благодаря периодической регенерации катализатора смесью водяного пара и воздуха /14,22/. [c.76]

    Прочие процессы конверсии олефинов. Промышленно-коммерческая ценность конвертирования бутенов падает по мере уменьшения порядкового номера гомологического ряда. Помимо производства третичного бутилового спирта за счет гидратации изобу-телена и вторичного бутанола за счет гидратации нормального бутена основными химическими процессами переработки бутенов являются полимеризация и сополимеризация изобутилена для производства упруго- и термопластичных полимеров, которые известны на торговом рынке как бутиловая резина и вистанекс-резика. Бутадиен (двойной ненасыщенный четырехуглеродный углеводород) — главный мономер в производстве синтетической резины, или бутадиена-стирена, бутадиена-акрилнитрила и полибу-тадиенов. Так как потребность в мономерном бутадиене достаточно велика, то одним из основных продуктов переработки нормальных бутенов (нормального бутена-1 и нормального бутена-2) является производство бутадиена посредством дегидрогенизации. Основные процессы конверсии углеводородов с радикалами С4 и их относительная экономическая значимость приведены в табл. 51. [c.236]

    О практическом значении каталитической дегидрогенизации парафинюв (нроиана и главным образом бутанов) может говорить потребление в США этих газов, применяемых до сих пор только как топливо в 1932 г. 129 тыс. м -, в 1937 — 535 тыс. ч в 1941 г.— 1684 тыс. — сжиженных пропана и бутана. В то же аремя только для производства синтетичеокого каучука ожидается потребность от 1000 до 1500 тыс. сжиженн.ого бутана, который должен быть подвергнут дегидрогенизации для превращения в изобутилеп или бутадиен. [c.129]

    Наиболее широко используемым диеновым углеводородом является бутадиен. Бутадиен (1,3-дивинил) СН2=СН—СН = СН2 — это газ, сжижается в легкокипящую жидкость (tmin — 4,5°). Его получают по методу С. В. Лебедева из этилового спирта. При пропускании паров этилового спирта над катализатором при температуре 400—500° С происходит дегидрогенизация и дегидратация (соответственно отщепление водорода и воды) по следующей схеме  [c.311]

    Кроме нриведенной схемы образования ароматических углеводородов через бутадиен, возможно, но маловероятно, образование их путем циклизации олефиновых углеводородов в нафтеновые с последующей дегидрогенизацией в ароматические углеводороды. [c.50]

    Проведенпе реакции в токе СОз над катализатором — окись хрома с разными добавками — приводит к глубокой конверсии бутана с образованием СО, Н2 и СН4. Это показывает, насколько устойчивы в этих условиях алканы и как склонны они к реакциям. распада. В тех же условиях бутен и этилбензол легко дегидрогенн-зируются. Этилбензол дает выход до 55% стирола за пропуск, причем распад на газообразные продукты составляет только 8—10%, катализатор. легко регенерируется и долго работает. Бутен дегидрируется с выходами бутадиена 33—34% на пропущенный или 80—90% па превращенный бутен Бутадиен, полученный дегидрогенизацией бутена или бутана, не загрязнен производными этина (ацетилена), как бутадиен из газов ииролиза (производные этина делают невозможной полимеризацию бутадиена над металлическим натрием). Один из балансовых опытов дегидрирования бутена над хромовым катализатором (сформован в виде цилиндриков плотность 2,89, насыпной вес 0,78 жг/л) при режиме процесса температура 600° С, давление 180 мм рт. ст., время контакта 0,65 сек., скорость подачи 1660 д/час л, следуюпщй. [c.295]

    Дегидрогенизацией над катализатором СгаОз при 500° С и выше к-бу-тилепов СНз—СНз—СН=СНз и СН3—СН = СН—СИ3 получают бутадиен, превращаемый в синтетический каучук (стр. 302)- [c.277]

    Способы синтеза сопряженных диенов (бутадиен, изопрен), кроме дегидрогенизации бутана и изопентана, не показательны, так как совершаются многостадийно (конденсация, полимеризация, дегидратация, гидрирование). Здесь приведен лишь классический способ синтеза, разработанный С. В. Лебедевым из этанола, который гфопускается при 400 °С над универсальным катализатором, дегидрирования, гидрирования и дегидратации (ZnO + AI2O3 + MgO)  [c.387]

    Бутадиен синтезируется из ацетилена ну тем (1) гидролиза, нрп-Бодящего к образованию ацетальдегида в присутствии разбавленной серной кислоты п соли ртути в качестве катализатора, (2) конденсации ацетальдегида в альдол, с разбавленным раствором НаОН, играющим роль катализатора, (3) каталитической гидрогенизации альдоля под давлением в 1,3 бутилен-гликоль и, наконец, (4) дегидратации последнего до углеводорода. В СССР бу та-диен приготовляется из этилового спирта, пропускаемого над специальным катализатором, что приводит к дегидрогенизации одной молекулы в ацетальдегид, который дегидратиру ется второй молекулой спирта  [c.443]

    Гроссе и его сотрудники [49с] показали, что каталитическая дегидрогенизация олефинов дает диолефины с тем же количеством углеродных атомов в молекуле. Дегидрогенизация производилась при температурах от 600 до 650° С и при пониженном давлении (около 0,25 ат и ниже). В качестве катализаторов были использованы окись хрома, молибдена или ванадия, нанесенные на окись алюминия. Выход диолефинов при однократном пропускании колебался от 20 до 30%. При этих условиях из нормальных бзггиленов получался бутадиен-1,3, из разветвленных пентенов получался изопрен и из пентена-2 — пиперилен. [c.49]

    Исключая члены, содержащие Р, и производя замену согласно (г), мы получаем формулу (111, 60), примененную А. А. Баландиным в статье [7] для расчеча кинетики дегидрогенизации бутилена в бутадиен. [c.223]

    Наиболее распространенный в промышленности контактный способ производства серной кислоты был осуществлен в начале текущего столетия. В годы первой мировой войны появились заводы синтеза аммиака. В настоящее время в крупных масштабах реализованы многие непрерывные каталитические процессы, в частности окисление этилена в окись этилена, окисление нафталина (ортоксилола) во фталевый ангидрид. Стирол производят каталитической дегидрогенизацией этилбензола, бутадиен — дегидрированием бутана или бутилена, акрилонитрил — окислительным аммонолизом метана. В нефтеперерабатывающей промышленности в очень крупных масштабах осуществляют каталитические процессы гидрообессерива-ния, крекинга, гидрокрекинга и риформинга. [c.10]

    Бутадиен. Производство синтетических каучуков из углеводородов С4 стало одной из важных отраслей химической промышленности. Дистилляционные методы оказались в данном случае непригодными, поэтому бутадиен из смеси углеводородов С4 выделяют главным образом жидкостной экстракцией. Бутадиен получают каталитической дегидрогенизацией бутилена. Реакционную смесь экстрагируют медноаммиачным ацетатным раствором, с которым бутадиен образует нестойкое комплексное соединение. После выделения из экстракта бутадиен используют для получения синтетического каучука, являющегося продуктом сополимерпзации бутадиена со стиролом. Бутадиен молено выделять также методом экстрактивной дистилляции. [c.639]

    В последние годы большое промышленное значение приобрели процессы дегидрогенизации парафиновых углеводородов в олефины (например, превращение изобутана в изобутилен) и диолефины (бутан- бутилены->бутадиен), позволяющие использовать нефтяные углеводороды в производстве высокооктановых компонентов моторного топлива и синтетического каучука. Дегидрогенизация этилбензола в стирол также широко применяется в промышленности. Наконец, дегидрогенизация некоторых нафтенов (особенно метилциклогексана), выделяемых в виде узких нефтяных фракций, служит новым источником получения ароматики в промышленности. Прим. переводчика)]. [c.619]

    Производство синтетического каучука в СССР [1] основано на использовании бутадиена, получаемого из этилового спирта. Развитие производства синтетического каучука зависит от производства дешевых бутадиена и изопрена л<аталитическая дегидрогенизация бутиленов или амиленов представляет удачное решение этой проблемы. Сырьем для производства каучука могут быть углеводородные масла, углеводородные газы и уголь. Гроссе, Моррелл и Мевити [40] дают подробное описание результатов каталитической дегидрогенизации моноолефинов в диолефины. Из бутена-1 и бутена-2 они получили бутадиен-1,3 из нормальных пентенов—пиперилен (пентадиен-1,2) и из пентена с разветвленной цепью — изопрен (2-метилбутадиен-1,3). Первоначальное положение двойной связи в цепи углеродных атомов олефинов, повидимому, не имеет значения, так как в присутствии катализатора с основанием из окиси алюминия происходит миграция связей [47, 70]. Таким образом, из З-метилбутена-1 или из смеси 2-метилбутена-1 и 2-метилбутена-2 получаются приблизительно одинаковые выходы изопрена. Однократной операцией дегидрогенизации из циклопентана получен диолефин циклопентадиен. Образование диолефинов из насыщенных углеводородов не ограничено циклической системой циклопентана. При дегидрогенизации н-бутана в бутилены получается небольшой процент бутадиена-1,3. Количество бутадиена зависит от условий процесса. [c.720]


Смотреть страницы где упоминается термин Бутадиен дегидрогенизация: [c.259]    [c.247]    [c.148]    [c.297]    [c.406]    [c.69]    [c.17]   
Переработка нефти (1947) -- [ c.10 ]




ПОИСК





Смотрите так же термины и статьи:

Дегидрогенизация



© 2025 chem21.info Реклама на сайте