Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Масс-спектрометрия алкенов

    Методы анализа основаны на предварительной калибровке прибора по эталонам — чистым образцам и (или) искусственным смесям тех углеводородов, которые могут присутствовать в анализируемом продукте. Анализ жидкостей по инфракрасным спектрам значительно быстрее, точнее и чувствительнее анализа по спектрам комбинационного рассеяния (при фотографической регистрации), но требует наличия эталонов. При анализе газов спектры комбинационного рассеяния пе имеют практического значения. Методы масс-спектрометрии в этой области в общем имеют большие возможности, чем инфракрасные, но при определении индивидуальных алкенов, например бутенов, преимущества на стороне инфракрасной спектроскопии. [c.498]


    Ряс. 8.1. Хроматограммы смеси алкенов, зарегистрированные в режиме байпаса (а), при включении микрореактора гидрирования между хроматографической колонкой и масс-спектрометром (б) и перед хроматографической колонкой (в) [c.187]

    Для иллюстрации на рис. 8.1 приведены хроматограммы смеси алкенов, зарегистрированные без включения микрореактора (а) и с микрореактором гидрирования между колонкой и масс-спектрометром (б). Как видно, они практически идентичны. [c.187]

    РИС. 6.3. Хроматограммы смеси алкенов, снятые с помощью байпаса (а) и микрореактора гидрирования между колонкой и масс-спектрометром (б) [c.44]

    Следует отметить заметную интенсивность в масс-спектрах алкенов пиков М , позволяющих устанавливать степень водородной ненасыщенности. Как будет показано ниже, их насыщенные аналоги могут и не содержать в спектрах пиков М . Поэтому в ходе исследования описываемым методом реакционной хромато-масс-спектрометрии очень важен сопоставительный анализ спектров алкенов и их гидрированных продуктов. [c.45]

    Пользуясь рассмотренным методом, хромато-масс-спектрометрический анализ смесей алкенов можно осуществлять в три стадии 1) компоненты смеси после хроматографического разделения вводятся в масс-спектрометр через байпасную систему (установление молекулярной массы, водородной ненасыщенности, некоторых элементов структуры) 2) компоненты вводятся в масс-спектрометр после прохождения через микрореактор гидрирования нри хроматографировании в токе газа-носителя — водорода (определение углеродного скелета) 3) аналогичный анализ с хроматографированием в токе газа-носителя дейтерия (определение углеродного скелета и положения двойной связи). [c.49]

    Методом хромато-масс-спектрометрии сняты и изучены масс-спектры получаемых при конденсации 1,3-диенов с формальдегидом по реакции Принса 4-алкенил-1,3-диоксанов, ниранов и непредельных спиртов, что позволило установить признаки, дающие возможность идентифицировать подобные соединения. [c.23]

    Смесь углеводородов с молекулярно-массовым распределением, аналогичным найденному в хондритах, была синтезирована в присутствии порошка метеоритного железа. При этой реакции получается метастабильное распределение нормальных и слегка разветвленных алканов и алкенов, в том числе диеновых углеводородов Сд—С12. При длительном нагревании наблюдалось частичное превращение алифатических углеводородов в ароматические. Карбонилы металлов после удаления непрореагировавшего оксида углерода и водорода разлагались при 200 °С. После этого конденсирующиеся органические соединения отгоняли под вакуумом в капиллярную колонку из нержавеющей стали с апиезоном Ь в качестве неподвижной фазы. Затем компоненты элюировали из колонки гелием под давлением в 1 ат и направляли выходящий из колонки газ в масс-спектрометр. Масс-спектры непрерывно регистрировали с помощью осциллографа. [c.255]


    Для метода характеристических сумм используют масс-спектры, полученные при высокой энергии ионизирующих электронов (70 эВ), для метода молекулярных ионов чаще используют масс-спектры низких энергий (10— 2 эВ). При этом резко падает интенсивность пиков осколочных ионов (становятся неотличимыми от фона) и одновременно повышается интенсивность пиков молекулярных ионов, что облегчает их выделение из смеси, и дает возможность более точного определения изотопных пиков. Уменьшение энергии ионизирующих электронов позволяет снизить интенсивность побочных процессов, таких, как выделение алкенов из алкил-бензолов, полициклических циклоалканов. и др. [181 —183]. Низковольтная масс-спектрометрия используется крайне редко (за исключением анализа азотсодержащих соединений). [c.133]

    Замещенные циклопропаны и циклопропены. Идентификация и установление строения замещенных циклопропанов и циклопропенов непосредственно с помощью масс-спектрометрии затруднительны, так как их масс-спектры близки к масс-спект-рам изомерных алкенов и алкинов. Однако, используя химическое модифицирование соединений циклопропанового ряда (основные реакции, применяемые для этой цели, приведены [c.179]

    Выше обсуждались трудности, с которыми встречается масс-спектрометрия ЭУ при изучении строения непредельных соединений, и описаны некоторые методические подходы, их устраняющие. Совершенно новые возможности для решения этой проблемы открывает реакционная хромато-масс-спектрометрия. Строение углеродной цепи алкенов может бьггь установлено при [c.187]

    При пиролизе образовывалось три вида продуктов 1) летучие продукты которые регистрировались пламенно ионизационным хроматографическим детектором, количество их составля ло 5—10 % от исходного образца 2) относительно нелетучие продукты (40—50 %) — конденсат, растворимый в смеси мети ленхлорида и метанола, образующийся на стенках пиролизной трубки (анализ их с помощью масс спектрометрии не удался, но ясно, что это полярные соединения), 3) остаток черного цвета на пиролизной проволоке Наиболее представительными про дуктами в пиролизате являлись алкилбензолы алкены 1, н алканы, алкилфенолы, разветвленные алкены и алканы, в небольших количествах были обнаружены метоксифенолы, алифатические альдегиды и кетоны, инданы, алкилнафталины, ге-тероатомные соединения, такие как тиофены, фураны, пирролы, индолы большие количества газообразных продуктов (СН4 СО2 H2S, SO2) Показано, что керогены, образовавшиеся из морских организмов, дают, главным образом, алифатические структуры с относительно короткими углеродными цепями Разветвленные цепи в продуктах пиролиза таких керогенов встречаются в большем количестве, чем в керогенах других типов Керогены, образовавшиеся из наземных высших растений, образуют алкилфенолы и метоксифенолы в значительно больших количествах, чем другие керогены Воска высших растений проявляются в пиролизатах в виде длинноцепочечных алканов и алкенов, среди которых преобладают цепи с нечетным и четным числом атомов углерода, соответственно [c.171]

    ИССЛЕДОВАНИЕ АЛКЕНОВ И ЦИКЛОАЛКАНОВ МЕТОДОМ РЕАКЦИОННОЙ (ГИДРО И ДЕГИДРО)ХРОМАТО-МАСС-СПЕКТРОМЕТРИИ [c.41]

    Наибольший интерес представляет использование подобных микрореакторов в хромато-масс-спектрометрии. Поэтому ниже описываемый метод мы называем реакционной хромато-масс-спектрометрией . Его предшественником является метод реакционной газовой хроматографии [1], который включает химическую модификацию для получения производных с известными хроматографическими характеристиками или для упрощения состава смеси. В отличие от этого реакционная хромато-масс-спектрометрия предусматривает целенаправленное видоизменение веществ с целью получения соединений, обладающих более информативными масс-спектрами, В настоящей работе рассмотрены возможности применения данного метода к исследованию смесей алкенов и циклоалканов, имеющих прямое отношение к химии нефти и нефтехимическому синтезу. [c.41]

    Для исследования алкенов и циклоалканов мы применяли микрореакторы, расположенные между хроматографической колонкой и масс-спектрометром (рис. 1). При таком расположении микрореактора химическое воздействие испытывает каждый компонент, элюированный из колонки после хроматографического разделения, причем хром 1тограмма соответствует смеси исходных соединений, тогда как масс-спектры отвечают продуктам превращения. Микрореактор может помещаться и перед хроматографической колонкой, как это обычно практикуется в реакционной газовой хроматографии. Однако таким [c.42]

    Наиболее распространенные способы включают гид-роксилирование олефинов по двойной связи и последующее превращение вицинальных диолов в бис-триметилсилиловые производные, ацетониды, борона-ты и др. Названные производные имеют характеристические масс-спектры, которые позволяют однозначно судить о положении двойной связи в исходных соединениях. Однако все эти методики довольно трудоемки, требуют значительных количеств образца и не всегда помогают установлению углеродного скелета олефинов. Разработанный нами вариант метода реакционной хромато-масс-спектрометрии для исследования молекулярной структуры алкенов является экспрессным, достаточно эффективным и применим к субмикроколичествам анализируемого материала [6]. [c.43]


    В основу метода положен тот факт, что в противоположность алкепам алканы содержат в масс-спектрах достаточно много признаков, Ро которым можно судить об их углеродном скелете. Гидрирование алкенов может с успехом проводиться в газофазном микрореакторе, который установлен в системе напуска хромато-масс-спектрометра, если в качестве газа-носителя при хроматографировании используется водород. Весьма заманчивым представляется дейтери-рование алкенов в том же микрореакторе газообразным дейтерием и последующий масс-спектральный анализ продуктов с целью определения положения двойной связи. [c.43]

    В предлагаемой методике мы использовали описанный выше микрореактор (см. рис. 2) с катализатором гидрирования, расположенный между колонкой газового хроматографа и масс-спектрометром (см. рис. 1). Аналогичная система была использована ранее [7] для установления наличия двойной связи в молекулах изомерных гексенолов. Однако структурно-аналитические воз-, можности методики в этой работе не выяснялись. Хотелось бы еще раз обратить внимание на существенное достоинство такого расположения микрореактора, которое хорошо видно на примере исследования алкенов. Действительно, в этом варианте последовательность и времена выхода пиков гидрированных продуктов па хроматограмме отвечают таковым для исходных алкенов, хотя в результате реакции может получиться один продукт (это имеет место для изомерных алкенов с одинаковым углеродным скелетом, но различным положением двойной связи). Таким образом, для каждого изомерного соединения по хроматограмме может быть определено его количественное содержание в смеси, а по масс-спектру продукта превращения — его структура. Эти вопросы нельзя решать, если микрореактор расположен перед хроматографической колонкой, поскольку в этом случае все изомерные олефины с одинаковым углеродным скелетом, при гидрировании дающие один и тот же продукт, проявляются на хроматограмме в виде одного пика. [c.43]

    Приведенные примеры убедительно показывают, что сравнительный анализ масс-спектров олефинов и продуктов их гидрирования, зарегистрированных в режиме реакционной хромато-масс-спектрометрии, позволяет определять основные элементы углеродных скелетов алкенов. В некоторых случаях (особенно для низших алкенов) уже на этом этане исследования можно установить и положение двойной связи. При решении данной задачи большую помош ь могло бы оказать селективное введение дейтерия по месту двойной связи, которое хотелось бы осуществлять в тех же условиях реакционной хромато-масс-спектрометрии, но при использовании газообразного дейтерия в качестве газа-носителя и газа-реагента. Действительно, если бы удалось селективно нродейтерировать олефин, то по масс-спектру насыщенного дидейтероаналога легко было бы определить положение двойной связи. Например, спектры дей-терогидрировапных 1- и 2-октенов резко бы различались, поскольку элиминирующиеся в процессе фрагментации осколки содержали бы различное количество D-атомов  [c.47]

    Подобное различие в масс-спектрах вицинальных дидейтероалканов, полученных при гидрировании индивидуальных изомерных нормальных алкенов в растворе на гомогенном катализаторе, позволило авторам работы [8] уверенно определять положение двойной связи. К сожалению, метод гидрирования в растворе неприменим в реакционной хромато-масс-спектрометрии. Некоторые сложности возникают и при использовании в условиях газофазного гидрирования, реализуемого в хромато-масс-спектрометрии, гетерогенных катализаторов на базе переходных металлов, которые не обеспечивают такого селективного дейтерирования, поскольку при проведении реакции как в растворах, так и газовой фазе наряду с присоединением дейтерия происходит обмен почти всех атомов водорода субстрата на дейтерий [9]. Однако наши исследования показали, что для некоторых разветвленных алкенов наблюдается высокая степень селективности насыщения двойной связи дейтерием. [c.47]

    На примере изомерных нормальных гептенов и октенов мы показали, что дейтерообмен, сопровождающий присоединение дейтерия по двойной связи, особенно интенсивно происходит при повышенных температурах (>150° С). Однако нри температурах ниже 150° С дейтерообмен несколько подавлен, и в масс-спектрах каталитического дейтерирования олефинов можно наблюдать некоторые различия в зависимости от положения двойной связи в субстрате. На рис. 5 приведены области пиков М в масс-спектрах, зарегистрированных после дейтерирования 1-, 2- и 4-октенов в условиях реакционной хромато-масс-спектрометрии. Как видно, в случае 1-алкена (1-октен) дейтерообмен играет гораздо меньшую роль но сравнению с дейтероприсоединением (пик с miz 116), чем для алкенов с внутренними двойными связями. Ана- [c.47]

    Циклоалканы являются еще одной группой углеводородов, где возможности масс-спектрометрии как структурно-аналитического метода довольно ограничены. Как уже говорилось выше, масс-спектры циклоалканов часто бывают похожи на спектры изомерных алкенов. Можно также встретить много общего между спектрами изомерных конденсированных, мостиковых, спирановых и сочлененных полициклоалканов [3]. Для алкилзамещенных циклоалканов по масс-спектрам бывает очень трудно или совсем невозможно определить характер разветвления. Все это диктует необходимость разработки специальных методик, которые увеличивали бы объем структурной информации, добываемой из масс-спектров. Именно этим целям служит разработанная нами методика реакционной хромато-масс-спектрометрии для исследования алкилциклоал-канов. [c.50]

    Как показано в предыдущем разделе, дифференциация циклопентанов и алкенов не представляет труда, если использовать микрореактор гидрирования, расположенный в хромато-масс-спектрометрической системе. Нужно, однако, отметить, что полиалкилциклогексаны но масс-спектральным характеристикам становятся близки циклонентановым углеводородам и во многих случаях может возникнуть проблема их различения. Предлагаемый нами метод, включающий дегидрирование в системе напуска хромато-масс-спектрометра, позволяет уверенно решать эту задачу. Действительно, в описанных условиях циклогексановые углеводороды превращаются в соответствующие ароматические, тогда как циклопентаны не меняются. [c.52]

    Описаны новые методы реакционной хромато-масс-спектрометрии для исследования структуры алкенов и циклоалканов, основанные на использовании системы газовый хроматограф—микрореактор гидрирования или дегидрирования—масс-спектрометр. При использовании этой системы (катализатор Pt/хромасорб W 50—250° С газ-носитель и газ-реагент — Hj) по масс-спектрам соответствующих алканов, образующихся из алкенов, легко удается установить характер углеродного скелета последних. Проведение хроматографирования в токе Da позволяет определять положение двойной связи в некоторых разветвленных алкенах. Исследование циклоалканов с использованием, катализатора дегидрирования (20%-ный Pt/ о2С° С газ-нсситель — 95%Не-f 5%Нг) позволяет судить о наличии и количестве дегидрируемых циклогексановых колец в молекуле, о характере-заместителей, дифференцировать циклопентановые и циклогексановые углеводороды, различать некоторые сочлененные, конденсированные и мостиковые углеводороды. [c.239]

    Пиролиз в сочетании с газовой хроматографией и масс-спектрометрией использован для исследования органического вещества в метеоритах [309, 319]. При исследовании метеорита Orgueil с использованием пиролиза в вакууме при 600 С установлено выделение алканов и алкенов С -Сд, алкилбензолов, а также ряда кислород- и азотсодержащих соединений [319]. Авторы предполагают, что органическое вещество метеорита претерпело изменения, аналогичные образованию керогенов на Земле. [c.237]


Смотреть страницы где упоминается термин Масс-спектрометрия алкенов: [c.95]    [c.140]    [c.50]   
Органическая химия Том1 (2004) -- [ c.568 , c.572 ]




ПОИСК





Смотрите так же термины и статьи:

Алкены

Масс-спектрометр

Масс-спектрометрия

Масс-спектрометрия масс-спектрометры



© 2025 chem21.info Реклама на сайте