Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Получение исходных алкенов

    В литературе имеется обширный материал, посвященный озонированию алифатических углеводородов и ароматических систем, нашедший прекрасное изложение в обзоре Бэйли . Что касается озонирования циклических алкенов, то по этому вопросу имеются довольно скупые сведения. В основном это работы, описывающие озонолиз циклогексена (с целью получения адипиновой кислоты), циклопентена и циклооктена Другие данные по озонированию циклических алкенов отсутствуют, вероятно, из-за недоступности самих исходных алкенов. Почти не описан в литературе, за исключением нескольких работ теоретического характера, и озонолиз диеновых и триеновых систем Судя по литературным данным реакция протекает через образование иона карбоння по механизму предложенному Криге Озонирование олефина вначале при водит к образованию амфиона и карбонильного соединения. В при сутствии инертного растворителя амфион либо реагирует с дру гим амфионом, образуя димерную или полимерную перекись, либо рекомбинирует с карбонильным соединением, давая озонид. При наличии реакционноспособных растворителей амфион реагирует с молекулой растворителя с образованием гидроперекиси  [c.125]


    Полимеризация изобутилена протекает весьма просто. При других алкенах, например пропилене или бутене-1, протекают более сложные реакции, в том числе перегруппировка, деструктивное алкилирование, расщепление (крекинг), изомеризация и т. д., которые следует детально рассмотреть/ Равным образом алкилирование изобутана бутенами с образованием алкилата также связано с многочисленными сложными реакциями, протекающие через промежуточные карбоний-ионы. По такому же механизму протекают и реакции изомеризации, например получения изобутана из м-бутана. Некоторые детали этих процессов будут рассмотрены дальше. Здесь достаточно лишь указать на убедительные доказательства ионного механизма реакций углеводородов. Обмен изотопами водорода между серной кислотой и алканами изостроения можно объяснить только, если постулировать легкое протеканий обмена между дейтерием катализатора и водородом исходного углеводорода [3, 68]. [c.170]

    Получение исходных алкенов [c.138]

    Изомеризация алкенов. Процессы изомеризации алкенов (как перемещение двойной связи, так и изменение скелета) проводят с целью повышения октанового числа продуктов крекинга, в особенности термического, или получения исходных веществ для органического синтеза, обладающих заданными структурой и положением двойной связи. Повышение октанового числа товарного автомобильного бензина в результате процессов изомеризации связано с тем, что октановые числа разветвленных и имеющих двойную связь внутри углеродной цепи алкенов на [c.82]

    Процесс проводят при 800-900 °С при давлении, близком атмосферному, с целью получения низших алкенов, в основном — этилена. Исходным сырьем является этан, пропан, бутан. Выход этилена из этана составляет 80 %, пропана — 48 %, н-бутана — 45 %. При пиролизе разветвленных алканов получаются алкены С3-С4 и алкадиены. При температуре выше 900 °С образуется аллен и метилацетилен. При пиролизе бензинов вместе с алкенами С2-С4 и бутадиеном образуется метановодородная фракция, алкены, циклоалкены, алкадиены, арены. Выход продуктов при пиролизе бензинов различного состава колеблется в широких пределах (в скобках дан выход продуктов, получающихся при пиролизе керосино-газойлевой фракции, жидких продуктов при этом получается около 50 %)  [c.212]

    Лучше полон ение с каталитическими окислительными реакциями алкенов. Алкены и непредельные соединения других гомологических рядов сравнительно легко полимеризуются без участия кислорода, давая ценные продукты. С помощью смешанных окисных катализаторов в последние годы из некоторых олефинов окислительным дегидрированием научились получать диолефины, а также непредельные альдегиды и кислоты с сохранением в их молекуле числа углеродных атомов, содержащихся в молекулах исходных алкенов. С помощью серебряных катализаторов из этилена с хорошей селективностью получают прямым окислением окись этилена, а из пропилена с не очень хорошими результатами — окись пропилена на серебре и на ряде окисных катализаторов осуществляется получение из олефинов альдегидов и кислот с меньшим числом углеродных атомов в молекуле, ангидридов непредельных двухосновных кислот сопряженным окислением алкенов и аммиака получаются непредельные и предельные нитрилы и т. д. [c.9]


    Эта относительно легко протекающая перегруппировка может оказаться досадной помехой при присоединении кислот, например галогеноводородов (см. разд. 7.3), к алкенам или при катализируемой кислотами гидратации алкенов (см. разд. 7.4.2) при этом могут получаться трудно разделяемые смеси продуктов или (в неблагоприятных условиях) целевой продукт вообще может быть не получен. Кроме того, может происходить присоединение карбокатионов к исходным алкенам или продуктам реакции (см. разд. 7.4.3). [c.128]

    Пиролиз. При температуре около 600°С алканы природного газа расщепляются с разрывом связей и образованием алкенов и алканов, но с меньшим числом углеродных атомов в молекуле, чем в исходных [27]. Эти реакции используют для производства этилена, пропилена, бутиленов, бутадиена, изопрена — основного сырья для получения спиртов, пластических масс, синтетического каучука [28]. Реакции проводятся при высокой температуре (пиролиз) или при более низкой температуре, но над катализатором (дегидрирование). [c.197]

    В промыщленных условиях параметры процесса изменяются в зависимости от молекулярного веса целевого олигомера и исходного мономера. Температура изменяется обычно в интервале 100-200°С, давление, поддерживающее необходимую скорость реакции, составляет примерно 100 атм. При получении С - и выше алкенов в качестве растворителя и жидкого теплоносителя можно использовать изопентан, [c.106]

    Трудность получения истинного сополимера этилена и пропилена объясняется значительно большей склонностью этилена к полимеризации по сравнению с пропиленом и другими высшими алкенами. Для синтеза сополимеров с хорошими свойствами приходится прибегать к различного рода специальным приемам. Один из них предусматривает использование исходной смеси с очень низкой величиной соотношения количеств этилена и пропилена. В других случаях в результате введения разнообразных мономеров создаются такие условия роста цепи, при которых блоки одних полимеров чередуются с блоками других. Такого рода полимеры обладают целым рядом достоинств, отсутствующих у гомополимеров. [c.122]

    При отщеплении молекулы галоидоводородов от галоидопроизводных образуются ненасыщенные соединения. В качестве веществ, отщепляющих галоидоводород, применяют спиртовой или водный раствор едкого кали, твердое едкое кали, натронную известь, амид натрия, окись свинца, диметиламин, диметиланилин, пиридин, хинолин и др. Выбор средства, отщепляющего галоидоводород, обусловливается строением как исходного соединения, так и ожидаемого продукта реакции. При обработке галоидоалкила водным раствором КОН наряду с алкеном получается значительное количество спирта выход алкена возрастает с ростом концентрации раствора КОН. Для получения ненасыщенных углеводородов часто применяют спиртовой раствор КОН, причем в качестве побочного продукта образуется эфир. Если галоидоводород отщепляется с трудом, необходимо применять твердое едкое кали . [c.700]

    Катализаторами дегидрогенизации алкильных цепей являются окиси молибдена, цинка, хрома, марганца, алюминия. Окись алюминия и окись хрома на окиси алюминия работают при скорости подачи газа порядка 1000, даже до 2000 объемов газа на 1 объем катализатора в час, давая глубину превращения 25—30% и выше, и до 95% полученных алкенов имеет то же число углеродных ато мов в молекуле, что и исходный углеводород Равновесие обратимой реакции, [c.295]

    В качестве основы выбирается самая длинная цепь, содержащая двойную углерод-углеродную связь соединение рассматривается как полученное из этой исходной структуры заменой атомов водорода на различные алкильные группы. Исходные структуры — это этен, пропен, бутен, пен-тен и т. д. в зависимости от числа атомов углерода название алкенов получается изменением окончания -ан в соответствующем алкане на -ен. [c.150]

    Спирты являются не только ценным исходным материалом для синтеза алифатических соединений вследствие многообразия их реакций, но они также доступны в больших количествах по низкой цене. Для получения простых спиртов существуют два принципиальных метода, лежащих в основе Синтеза алифатических соединений гидратация алкенов, полученных при крекинге нефти, и ферментативный гидролиз углеводов. Кроме этих двух основных методов, существуют и некоторые другие, имеющие более ограниченное применение. [c.482]

    Если каталитическое гидрирование обычно осуществ-т в избытке водорода (давление от 0,1 до 7,0 МПа) и и температурах 125-150 °С, то процесс дегидрирования, й в процессах риформинга (см вьпне), получения ейших алкенов (этилен, пропилен, бутилены, бутади-, изопрен, стирол) — исходного сырья в промышленнос-пластических масс, синтетического каучука, — прово-при более высоких температурах (300-550 °С) и более ких давлениях (от менее 0,1 до 0,5 МПа) [c.263]


    В спектре алкана Via (рис. 4, г), полученного при гидрировании алкена VI, наблюдаются интенсивные пики с miz 43 [ gH ] и 71 [М—СНз]+, которые говорят о наличии в молекуле концевой изопронильной группы. Похожий масс-спектр имеет и изомерный 2,3-диметилбутан. Однако исходный алкен не может быть 2,3-диметилбутеном, поскольку, как было показано выше, он должен иметь при двойной связи н.СзНт-грунпу. [c.47]

    Алкены получались дегидратацией соответствующих первичных спиртов посредством получения сложных эфиров со стеариновой кислотой с последующей термической деструкцией их. Газохроматографическим методом установлено, что алкены содержали двойную связь только в а-положении. Характеристика исходных алкенов и полученных на их основе фенилалканов приведена в табл. 56. [c.168]

    Для получения некоторых алкенов (октен-1 [73], 2,2-диме-тилгексен-3 [74], 2,4-диметилпентвн-2, 3,3-диметилг ексен-4, но-нен-1 [75], гептен-3 [76]) применялся метод пиролиза ацетатов. Р. Я. Левина )разработала метод синтеза алкенов (а из них— алканов) с четвертичным атомом или несколькими третичными атомами углерода и синтезировала многие новые углеводороды такого строения [77] исходными веществами для этих синтезов послужили алкадиены с сопряженной системой двойных связей  [c.52]

    Сущность экстракционной перегонки заключается в том, что весьма близкая к единице величина коэффициента относительной летучести компонентов системы, характеризующая в данном случае особую трудность их разделения, претерпевает, в присутствии надлежащим образом подобранного растворителя, серьезное изменение, заметным образом отклоняясь от единицы и тем самым, создавая сравнительно более благоприятные условия для разделения исходной системы на ее практически чистые составляющие. Так, например, на установках каталитической дегидрогенизации н-бутана с целью получения бутенов, фракция продуктов реакции в основном состоит из неразложившегося н-бутана, бутена-1 и высоко- и низкокипящего изомеров бутена-2. При этом отделение бутенов-2, особенно же низкокипящего их изомера, от н-бутана методами обычной ректификации практически неосуществимо. Если же в колонну ввести специальный высококипящий растворитель, например, фурфурол, фенол или ацетон, то разделение этих же компонентов оказывается вполне возможным. Объясняется это тем, что в обычных условиях летучесть н-бутана (4ип = — 0,5° С), отнесенная к летучести низкокипящего изомера бутена-2 (4ип = 0,9° С) составляет К = 1,0125. Если же рассмотреть коэффициент относительной летучести этих же веществ в присутствии растворителя—фурфурола, то оказывается, что он доходит до АГ= 1,7, т. е. значительно возрастает и тем самым значительно облегчается разделение этих веществ в ректификационной колонне. Разница в летучестях н-бутана и бутенов в условиях экстракционной перегонки объясняется различной растворимостью алканоз и алкенов в растворителях типа фурфурола, фенола или ацетона. [c.154]

    Полученный катализат 2,5-диметилгексана содержал 8% ароматических углеводородов, 5% 1,1,3-триметилцикло-пентапа и 1,5% алкенов. Ароматическая часть катализа-та содержала 95% и-ксилола. Такое количество -ксилола, согласно сказанному выше, может получаться лишь в результате прямой Сб-дегидроциклизации. Следовательно, реакции s и Сб-дегидроциклизации на Pt/ проходят параллельно и независимо друг от друга и лишь от строения исходного углеводорода зависит, какой из видов дегидроциклизации будет преобладать в каждом конкретном случае. [c.194]

    Олигопропилен по сравнению с олигоэтиленом не обладает высокими вязкостно-температурными свойствами и термостабильностью, что объясняется наличием в молекулярной цепи боковых ответвлений. Поэтому наиболее целесообразным способом получения синтетических масел [пат. США 3923919, 4182922] является соолигомеризация пропилена с этиленом в присутствии стерео-специфических катализаторов с последующим гидрированием полученных соолигомеров. Широкие возможности варьирования структуры соолигомеров открываются при использовании в качестве исходного сырья различных мономеров этилена, пропилена, стирола, бутадиена и др. Согласно пат. ГДР 109226, например, синтетические смазочные масла получают соолигомеризацией под давлением алкенов С4 или бутеновой фракции газа пиролиза с бутадиеном-1,3 в присутствии катализатора Фриделя — Крафтса. [c.155]

    В 1997 г институтом ВНИИОС совместно с НИИграфит по заданию Минатома РФ были разработаны исходные данные ддя ТЭО установки мощностью 2,5 тыс.т/год по получению кокса марки КНПС на Томском нефтехимическом комбинате на основе новых технических решений из альтернативного сырья - смеси фракций газового конденсата Уренгойского месторождения с добавкой керосино-газойлевой фракции малосернистой нефти. Установка базировалась на процессе пиролиза этиленового производства с получением тяжелых смол пиролиза бензиновой и дизельной фракции, а также фракции, выкипающей выше 200 С, с их дальнейшим коксованием с получением коксов марок КНГ, КЗК с направлением на пиролиз дистиллата коксования. В дальнейшем по традиционной схеме осуществляется двухстадийный процесс пиролиз-коксование в кубах. В процессе пиролиза протекает пиролитическая ароматизация исходного сырья с получением смолы, направляемой на коксование. В состав установки пиролиза входит печь пиролиза, реакционная камера, гидравлик и система выделения отдельных фракций, таких как легкое масло и зеленое масло. В пиролизной печи происходит разложение углеводородного сырья при 690-710 С с образованием пирогаза, содержащего низшие олефины и диеновые углеводороды, жидких продуктов, состав которых характеризуется высоким содержанием ароматических, алкенил- ароматических и конденсированных соединений. В реакционной камере происходит полимеризация, конденсация и уплотнение продукгов первичного распада сырья с образованием компонентов целевой смолы для процесса коксования, таких как полициклические ароматические соединения, асфальтены и карбоиды. Время пребывания потока в реакционной камере составляет 20-30 сек. За счет протекания экзотермических реакций уплотнения температура в [c.143]

    Спирты предельного ряда с тремя—пятью С-атомами входят в состав сивушного масла — смеси, сопутствуюш,ей этиловому спирту брожения. Сивушное масло отделяется при ректификации спирта, дальнейшей разгонкой из иего выделяют входящие в его состав спирты пропанол-1, 2-метилпропанол-1, З-метилбутанол-1, 2-метилбутанол-1. Все эти спирты герпичные в отличие от спнртов, получаемых гидратацией алкенов. Оии пспользуются как растворители, служат исходными веществаь. и для получения сложных эфиров, карбонильных соединений. [c.287]

    Классическая реакция отщепления по Гофману сыграла в свое время исключительно важную роль при устан овлении структуры некоторых природных соединений и, в частности, алкалоидов. Исчерпывающим метилирова 1ием переводят все имеющиеся в молекуле основные атомы азота в четвертичное состояние, после чего соответствующую четвертичную гидроокись нагревают. Факт удаления азота из соединения в результате только одной такой обработки свидетельствует о том, что он находится в боковой цепи отщепление же после двух или трех таких обработок указывает соответственно на его присутствие в насыщенном кольце или на то, что он наход41тся в сочленении колец. Образующийся при этом алкен также подвергается исследованию, и полученные данные позволяют иметь дополнительную информацию о структуре исходного соединения. [c.241]

    Он привел доводы в пользу того, что синглетные карбены присоединяются путем синхронного образования обоих новых о-связей, давая только (74) и сохраняя таким образом стереохимию исходного алкена, в то время как триплетные карбены присоединяются по радикальному двухстадийному механизму с образованием в первую очередь бнрадикала (75), в котором может происходить вращение вокруг связи до инверсии спина и замыкания кольца, что приводит к обоим диастереомерам (74) и (76). Несмотря на широкое обсуждение справедливости теоретических предпосылок, правило Скелла исключительно успешно объясняет многие экспериментальные данные, полученные для этих реакций присоединения. Однако при использовании правила следует соблюдать определенную осторожность, так как в его основе лежат некоторые предположения об относительных скоростях стадий схемы (48), которые могут соблюдаться не во всех случаях [38]. Таким образом, прежде чем однозначно приписать определенную реакционную способность одному из спиновых состояний карбена, следует выяснить свойства обоих состояний. В ряде случаев, когда это требование было точно соблюдено, например в случае метилена, бисметоксикарбонилкарбена, флуоренилидена и др., результаты всегда соответствовали предсказаниям Скелла. Расчет поверхности потенциальной энергии присоединения синглетного метилена к этилену [40, 70] подтверждает синхронность реакции и свидетельствует, что она осуществляется по принципу наименьшего движения через разрешенный орбитальной симметрией подход (77), при котором вакантная р-орбиталь (НСМО) карбена взаимодействует с занятой я-молекулярной орбиталью алкена, причем карбен расположен так, чтобы перекрывание было максимальным, а пространственные взаимодействия минимальны. Более симметричный подход (78), когда занятая о-орбиталь карбена взаимодействует с я-системой, запрещен орбитальной симметрией и по расчету обладает более высокой энергией, чем (77). Расчеты (77) указывают на наличие я р-переноса заряда в переходном состоянии (79), что согласуется с экспериментально наблюдаемым ускорением присоединения большинства карбенов к алкенам, содержащим электронодонорные заместители, и свидетельствует об электрофильной атаке карбена. Многочисленные исследования относительной реакционной способности карбенов с целью выяснения влияния пространственных и электронных эффектов различных заместителей в алкенах и карбенах критически оценены Моссом [48], который показал недавно, что селективность многих карбенов типа СХУ при реакции с олефинами коррелирует как с резонансными, так и с индуктивными параметрами X и V [71]. Большинство карбенов, в том числе сильно я-стабилизованный Ср2 (49), ведут себя как типичные электрофилы, однако ароматические карбены, такие как (80) и (47), проявляют нуклеофильные свойства, например (80) присоединяется через переходное состояние, поляризованное противоположно (79) [72]. Полагают, что это обусловлено [c.596]

    Реакция отщепления молекулы галоида от дигалоидоалканов не имеет препаративного значения для получения алкенов, зато гмеет огромное значение как метод выделения и очистки ненасыщенных соединений. Сильно загрязненные ненасыщенные соединения превращают в труднорастворимые хорошо кристаллизующиеся дибромиды или дихлориды, из которых затем, отшепляя хлор или бром, получают исходные соединения в очищенном виде. Аналогично при реакции с ненасыщенными соединениями в условиях, когда двойные связи могут подвергаться атаке, их защищают, присоединяя галоид, а затем, по окончании реакции, отщепляют галоид и регенерируют ненасыщенное соединение. Например, при получении акриловой кислоты из акролеина последний превращают в а,р-ди-бромпропионовый альдегид, который окисляют до кислоты затем отщеплением брома от дибромпропионовой кислоты получают акриловую кислоту. [c.703]

    Две промышленные установки избирательной парофазной гидроочистки работают на заводах фирмы Шелл около 10 лет [1]. При этом процессе, осуществляемом на высокоактивном и легко регенерируемом сульфидном вольфрам-никелевом катализаторе, поддерживают давление в пределах 35— 52,5 ат и температуру 230—370° С в зависимости от характеристик исходного сырья и требуемой глубины очистки. Один из вариантов этого процесса использовался еще во время второй мировой войны для очистки высокоароматических бензинов каталитического крекинга для получения компонентов авиационного бензина, обладающих высокой детонационной стойкостью на богатых смесях. Из-за присутствия большого количества ненасыщенных компонентов и серы бензин характеризовался высоким содержанием смол и низкой детонационной стойкостью при работе на бедных смесях (без добавки ТЭС), но гидрированием его удавалось получать с количественным выходом авиационный бензин, полностью удовлетворяющий требованиям спецификаций. При этом процессе достигались избирательное насыщение алкенов и обессеривание без одновременного гидрирования ароматических компонентов. После окончания второй мировой войны эти установки переключили на производство компонентов автомобильного бензина. Оказалось, что при высокой объемной скорости на применяемом катализаторе избирательно гидрируются сернистые соединения (с образованием сероводорода) без сопутствующих реакций крекинга или полимеризации диены с сопряженными двойными связями насыщаются почти полностью при крайне незначительной степени гидрирования алкенов. Этот вариант процесса приводил к образованию малосернистого продукта с низким содержанием смол, сохраняющего высокое октановое число (по исследовательскому методу) исходной 4>ракции. Вследствие высокого выхода продукта (более 100% объемн.) процесс оказался экономически более выгодным, чем кислотная очистка. [c.154]

    Единственным препаративным методом получения А -заме-щенных циклопентенов является метод, основанный на взаимодействии 3-хлор циклопен тена-1 с соответственным алкилмаг-нийбромидом. Принципиально этот метод не отличается от методов синтеза алкенов-1, всходящих из хлористого или бромистого аллила и алкилмагнийгалогенидов. В качестве исходного алкилбромида для синтеза были применены бромистые этил, изоамил и додецил, н.-амил и н.-гексил, н.-бутил и н.-октил. Использованы были также и другие галоидалки-лы.  [c.19]

    На выход ароматических продуктов пиролиза строение исходного углеводорода влияет следующим образом больше всего бензола образуется из нафтенового сырья. Алканы изостроения дают более высокие выходы ароматических углеводородов, чем н-алканы, и эта зависимость заметнее при большем разветвлении исходного сырья. Это объясняется повышенной концентр ащ1ей в составе продуктов разложения изомеров аллильного и диенильного радикалов, при взаимодействии которых образуются бензол, толуол и ксилолы. Занисимости состава продуктов пиролиза от строения углеводородов закономерны для широкого диапазона параметров процесса пиролиза. При неизменной качественной картине наблюдается различие в количественных соотношениях продуктов пиролиза. Выход ароматических соединений зависит также от содержания ароматических углеводородов в исходном сырье, которые в процессе пиролиза в значительной части ( 70—80%) либо сохраняются, либо деалкилируются с образованием преимущественно бензола. Показано [141], что с увеличением содержания ароматических углеводородов в сырье от О до 12% в пи-рогазе несколько уменьшается концентрация этана, пропилена,, бутена и бутадиена-1,3, незначительно повышается содержание этилена, метана и более заметно — водорода при этом имеет место пропорциональное уменьшение газообразования. Зависимость выхода алкенов и газообразования от добавки ароматических углеводородов к бензину носит линейный характер. Это дает основание предположить, что ароматические соединения в основном не принимают участия в реакциях разложения, приводящих к получению газообразных углеводородов [141]. [c.48]

    Эти процессы имеют особенно большое значение для промышленного получения алкенов-1 иалканолов-1 сдлиной цепи С12, Си, ie и ie, которые служат исходным сырьем для получения поверхностно-активных веществ (тенсидов) (см. раздел 3.10). [c.544]


Смотреть страницы где упоминается термин Получение исходных алкенов: [c.197]    [c.41]    [c.46]    [c.320]    [c.143]    [c.320]    [c.34]    [c.126]    [c.324]    [c.382]    [c.189]    [c.2245]    [c.483]    [c.361]    [c.81]    [c.136]    [c.275]    [c.382]   
Смотреть главы в:

Синтетические моющие средства из нефтяного и сланцевого сырья -> Получение исходных алкенов




ПОИСК





Смотрите так же термины и статьи:

Алкены

Алкены получение



© 2025 chem21.info Реклама на сайте