Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Органические вещества, разделение

    А вскоре химики получали в лаборатории уже много других органических веществ из неорганических. Разделение химических веществ на два класса утратило свой первоначальный смысл. [c.11]

    Наиболее соответствует современному состоянию изучения органических веществ разделение их на следующие большие группы  [c.83]

    Предлагаемая вниманию читателей книга имеет непосредственное отношение к этим весьма актуальным проблемам и содержит изложение новейшей техники концентрирования следов органических веществ, разделения их методом капиллярной газовой хроматографии и идентификации с помощью скоростных масс-спектрометров. Излагаются работы последних лет, позволившие идентифицировать сотни органических компонентов земной атмосферы на уровне концентраций порядка 10- %. [c.3]


    Предложен селективный высокочувствительный детектор по электропроводности для детектирования азотсодержащих органических веществ, разделенных на компоненты методом газо-жид-костной хроматографии метод основан на определении аммиака, образующегося при гидрировании веществ на К1-катализаторе [627]. [c.116]

    Разделение растворов органических веществ. Разделение растворов органических веществ обратным осмосом, влияние на процесс разделения внешних факторов можно объяснить с позиций капиллярно-фильтрационной модели механизма селективной проницаемости мембран. [c.132]

    Для разделения кипящих при близких температурах углеводородов с различным числом и характером п-связей методами экстрактивной ректификации и экстракции предложено большое число полярных органических веществ различных классов, содержащих кислород, серу и фосфор кетоны, альдегиды, спирты, эфиры, амины, нитрилы, нитраты, карбонаты, лактоны, амиды карбоновых, серусодержащих и фосфорсодержащих кислот, лак-тамы, сульфоксиды и др. [5—7]. Однако лишь небольшая группа растворителей из общего числа предложенных в литературе отвечает необходимым требованиям, предъявляемым к экстрагентам разделения близкокипящих углеводородов С4 и С5. Важнейшими из этих требований являются требования к селективности и растворяющей способности экстрагентов по отношению к разделяемым углеводородам. [c.669]

    Усовершенствования в разделении органических веществ. (Разделение м- и -ксилолов.) [c.21]

    Для практических целей наиболее удобно разлагать комплекс путем растворения, в особенности горячей водой. Углеводороды, выделенные из комплексов, образуют несмешивающийся слой над водным раствором мочевины, от которого они легко могут быть отделены. Летучие органические вещества удаляют нагреванием комплекса (высушивание иля отгонка с паром) и собирают освобожденные углеводороды по море их выделения. Действительно, предварительное разделение на фракции может-быть осуществлено таким способом или путем частичной экстракции рас творителем. Менее стабильные комплексы выделяются при этом в первую, очередь и могут быть собраны. [c.223]

    Ввиду того, что данные по равновесию не всегда легко доступны, степень разделения может быть определена по разности выходов комплексов, полученных с индивидуальными веществами и смесями органических веществ в одинаковых условиях. При большой разности выходов фракционное комплексообразование будет весьма эффективным, при малой разделение будет неполным. [c.224]


    Кроме того, часто возникают и другие осложнения процесса разделения. Значения pH смещаются в сторону кислых или щелочных сред, что ускоряет гидролиз полимерных мембран. Возможно обезвоживание набухающих мембран, сопровождающееся необратимым изменением их структуры. В концентрированных растворах ряда органических веществ может происходить растворение мембран. В результате дополнительного воздействия концентрационной поляризации на мембране могут выпадать в осадок малорастворимые соли, а при ультрафильтрации высокомолекулярных соединений образуется гелеобразный слой, что нарушает нормальную работу аппаратов. [c.188]

    Органические компоненты водных растворов. Во многих случаях промышленные сточные воды содержат одновременно неорганические и органические загрязнения. Оценить результаты очистки таких вод обратным осмосом в настоящее время невозможно, так как установленные при разделении растворов неорганических или органических веществ закономерности могут не соблюдаться в смешанных системах. [c.194]

    Предложено несколько моделей селективной проницаемости мембран, которые ранее рассмотрены в работе [1, с. 83]. Там же проведено сопоставление этих моделей и дана оценка их соответствия экспериментальному материалу. Показано, что опытные данные по селективности и проницаемости мембран и влияние на эти характеристики внешних факторов наиболее полно объясняются капиллярно-фильтрационной моделью механизма полупроницаемости, которая за последние годы получила дальнейшее развитие и экспериментальное подтверждение. Из этой модели следует, что очень большое влияние на процесс разделения растворов неорганических и органических веществ оказывает поверхностный слой жидкости. [c.200]

    Проблема анализа распределения компонентов остатков по размерам приобрела большое значение сравнительно недавно и в основном связана с развитием процессов их каталитического гидрооблагораживашм. Возможность получать какие-то определенные результаты появилась после разработки метода гель-хроматографического разделения. Метод этот — гель-проникающая хроматография (ГПХ) — впервые нашел широкое применение в биохимии и химии полимеров [31]. При ГПХ разделение органических веществ осуществляется совсем на иных принципах, чем при других хроматографических методах. Принцип метода заключается в том, что во время прохождения раствора исследуемого вещества через колонку, заполненную частицами твердого геля, происходит разделение молекул этого вещества за счет различной способности их проникать в поры геля. Поры в частице геля имеют различный размер. Молекулы образца также различаются по величине. Некоторые молекулы слшиком велики, чтобы войти даже в самые крупные поры, и исключаются из частицы геля. Поэтому они двигаются через слой геля между его частицами и первыми выходят из колонки. Другие молекулы так малы, что входят во все поры геля, полностью проникая в частицу. Эти соединения задерживаются в наибольшей степени и появляются на хроматограмме последними. Молекулы промежуточных размеров могут входить только в некоторые поры и двигаются по колонке со средней скоростью. При разделении смеси с ширркой областью молекулярных масс используют набор гелей с разными пределами исключения. Это позволяет расширить область фракционирования колонки. Использование различных гелей дает эффект только при последовательном соединении колонок с разными гелями. При разделении соединений, мало различающихся по размеру, используют гели с узкой областью [c.36]

    Капиллярно-фильтрационная модель механизма селективной проницаемости позволяет объяснить влияние внешних факторов на процесс разделения электролитов и водных растворов органических веществ и получить некоторые расчетные зависимости для определения основных характеристик процесса. Так, учет влияния концентрации электролита в исходном растворе на эффективность разделения обратным осмосом может быть проведен на основе представлений об определяющем влиянии гидратирующей способности ионов [116, 158, 163]. Согласно этим представлениям, чем выше гидратирующая способность ионов электролита, тем больше и прочнее гидратная оболочка ионов, что, в свою очередь, затрудняет их переход через поры мембраны. Поэтому в разбавленных растворах, когда сила связи ион — вода меняется незначительно, селективность остается практически постоянной (область И на рис. IV-18,б). С увеличением концентрации электролита эта связь ослабевает и селективность снижается. [c.204]


    РАЗДЕЛЕНИЕ РАСТВОРОВ ОРГАНИЧЕСКИХ ВЕЩЕСТВ [c.217]

    Граница между этими двумя категориями очень не ясная. Например, минеральные вещества, которые отложились в торфяных болотах одновременно с растительным материалом, могли вступить в контакт с органическими веществами во время метаморфизма и включиться, таким образом, в состав минеральных компонентов материнского вещества угля. На практике при решении проблемы обогащения породы разделяются на два класса согласно их податливости к разделению породу, которую невозможно отделить, включающую компоненты — неорганические вещества растений, связанные, как полагают, с органическим веществом, и породу, которая весьма тонко распределена. [c.41]

    При разделении водных растворов неполярных органических веществ возникают условия для преимущественной сорбции этих веществ на мембранной поверхности. В такой системе градиент концентрации в связанном слое будет отрицательным (рис. IV-33, б). [c.217]

    Исходя из рассмотренной выше модели механизма разделения смесей органических веществ, можно предположить, что при изменении концентрации исходной смеси будут меняться состав, толщина и другие свойства связанного слоя. Рассмотрим два случая — разделение смеси [c.222]

    Для неионизированных полярных алифатических и алициклических органических веществ в водных растворах обратноосмотическое разделение определяется полярными и стерическими эффектами и величина Ам//гб может быть вычислена по соотношению [c.227]

    На практике увеличение размера частиц уже имеющейся суспензии обычно достигается их агрегацией в результате добавления к суспензии различных неорганических или органических веществ. Эти вещества должны обладать такими свойствами, которые сводят к минимуму обратные процессы пептизации и улучшают условия разделения суспензии на фильтре, а также позволяют быстро приготовить их в удобном для использования виде и смещать с суспензией. Подобные вещества, применяемые в промышленности, предложено объединить в следующие группы неорганические соли, крахмал и его производные, полиэлектролиты. Агре- [c.190]

    Ионообменный хроматографический метод, основанный на процессе ионного обмена с использованием в качестве ионообменных материалов природных или синтетических неорганических илн органических веществ. Процесс разделения обусловливается различием констант обмена разделяемых компонентов [c.375]

    Необходимость экстракции разделяющего агента для его регенерации существенно усложняет технологическое оформление процессов разделения. Для того чтобы уменьшить связанные с этим трудности, было предложено применять в качестве разделяющих агентов в процессах азеотропной ректификации смеси полярных органических веществ (например, метанола, ацетона, метилэтилкетона) с водой [281—286]. В качестве примера на рис. 99 изображена принципиальная схема процесса выделения толуола из углеводородных смесей с водным раствором метилэтилкетона (МЭК) как разделяющим агентам. [c.275]

    В химической технологии физические процессы уже прошли такое развитие. Процессы физического разделения достаточно полно охватываются сложившимися разделами химической технологии в отличие от систематизации химических реакторов систематизация физических процессов близка к совершенству. Классификация процессов по чисто химическим признакам (окисление, гидрирование и т. и.) имеет некоторые преимущества для технологии органических веществ. Она, однако, неудобна для систематического изучения химических реакторов, поскольку другие факторы, такие, как тепловые эффекты и условия перемешивания и диспергирования, в равной степени определяют работу реактора. Поэтому последовательность изложения, принятая в этой книге, в основном базируется на учете физических факторов. [c.10]

    Показатель преломления наряду с температурой кипения широко применяется для характеристики органических веществ 59]. При разделении близкокипящих веществ непрерывное определение [c.459]

    Биохимические методы очистки основаны на способности некоторых микроорганизмов разрушать органические вещества до двуокиси углерода, воды и других неорганических безвредных или менее вредных для жизни водоема соединений. Биологическая очистка осуществляется в специальных устройствах — аэротенках, представляющих собой длинные железобетонные резервуары, разделенные на несколько параллельных секций (чтобы можно было выключить одну из них для очистки и ремонта), по которым медленно протекает сточная вода вместе с так называемым активным илом, заселенным бактериями, грибками и другими микроорганизмами, часть которых способна разрушать органические вещества. [c.264]

    Весьма разнообразны методы хроматографии, играющие большую роль в аналитической химии, особенно в анализе органических веществ. Разделение смесей осуществляется при движении жидкой или газообразной фазы сквозь слой неподвижного сорбента, состоящего из дискретных элементов — обычно зерен или волокон. Сорбент обладает большой суммарной поверхностью. Разница в адсорбируемости компонентов разделяемой смеси или в кинетике их сорбции и десорбции обеспечивает разделение. Дело в том, что при движении смеси через слой сорбента элементарные акты сорбции и десорбции повторяются множество раз это позволяет эффективно использовать даже очень малую разницу в сорбируе-мости компонентов или разницу в кинетике сорбции — десорбции. Механизм сорбции может быть различным — простая адсорбция, ионный обмен, образование осадков, растворимых комплексных соединений, распределяемых между двумя жидкими фазами. Соответственно известны и применяются адсорбционная, ионообменная, осадочная, распределительная хроматография. Различна и техника хроматографического разделения сорбентом можно заполнить колонку, его можно использовать в виде тонкого слоя — мы будем иметь дело с колоночной, бумажной или тонкослойной хроматографией. Иногда хроматографическое разделение осуществляют ири наложении электрического поля и тогда появляется [c.80]

    Новиков В.Ф.,Нуртдинов С.Х.-Авт.св. 557319,заявл.8.04.75,№2121725/25, опубл.16.06.77 Открытия,изобрет.,промышл.образцы,товарн.знаки,1977,№17, 144 РЖХим,1978,1978,4Б1480П, Неподвижная жидкая фаза для газохроматографического разделения смесей органических веществ, (Разделение смесей спиртов С3-С5 на окисях трет.фосфинов в качестве НФ,) [c.68]

    Комплексообразование. Разделение нри помощи комплексов может быть названо комплексообразованием, термином, но смыслу аналогичным, дистилляции. Существует много вариантов такого разделения. В процессе комплексообразования фракциоинрованпе может быть выполнено не только отделением структур, вступающих в комплексы, от некомплексообразующих, но также фракционированием органических веществ. [c.223]

    Явление адсорбции было открыто во второй половине XVIII века. Шееле в 1773 г. в Швеции и Фонтана в 1777 г. во Франщш наблюдали поглощение газов углем, а Т. Е. Ловитц в 1785 г. в России наблюдал поглощение углем органических веществ нз водных растворов. Явление адсорбции газов активным углем было использовано Н. Д. Зелинским при создании противогаза для защиты от отравляющих веществ, применявшихся во время первой империалистической войны,—в противогазе пары отравляющих веществ хорошо адсорбировались из тока воздуха активным углем. Разделение веществ на основе их различной адсорбируемости широко используется в настоящее время как в промышленности, так и для аналитических целей. Впервые возможность использования адсорбции смесей для их анализа была открыта М. С. Цветом в 1903 г. в Варшаве, который применил адсорбенты для разделения окрашенных биологически активных веществ и в связи с этим назвал этот метод хроматографическим адсорбционным разделением смесей. В настоящее время хроматографические методы широко используются для анализов сложных смссей и для автоматического регулирования технологических процессов (см. Дополнение). [c.437]

    Образование нефти совершалось во всех точках органогенного слоя, где был соответствующий материал, следовательно, нефть в этом пласте все время находилась в диффузно рассеянном состоянии. По мере того как образовавшаяся нефть выжималась в пористые породы, органогенный пласт или первично-битуминозная порода постепенно беднели органическим веществом, и к концу процесса приобрели приблизительно тот характер слабо битуминозных пород, которые мы наблюдаем теперь в глинах майкоп-, ской свиты, темно-серых глинах диатомовой свиты Бакинского района и т. п. Выжатая в рыхлую породу вместе с водою нефть первоначально образовывала с нею нераздельную смесь, и потом, вследствие разницы в удельном весе, началось разделение этих жидкостей причем, как мы уже указывали в. главе VI, в кровле песчаного пласта расположился слой нефти с газом, а нижнюю часть заняла вода. По мере того как твердела порода и становилась все более стойкой по отношению к действующим на нее силам сжатия, в процессе вытеснения нефти из глины в пески и вообще в рыхлые породы приняла участие скопившаяся в рыхлом пласте вода, которая, в, силу большой величины поверхностного натяжения по сравнению с нефтью, постепенно вытеснила ее из всех мельчайших пор. По мере нарастания мощности осадков, по мере погружения первично-битуминозной породы в более глубокие зоны земной коры приобретали в процессе нефтеобразования возрастающее значение процессы гидрогенизации, которые все более и более улучшали качество нефти. Чем глубже песок, тем лучше нефть (the deeper the sand, the better the oil), говорят американцы и не безосновательно. Конечно, условия нефтеобразования столь сложны, что эта поговорка может быть оправдана не в деталях, а только в весьма общем виде. В Калифорнии, нанример, глубокие пески содержат нефть в 28—35° Вё,- тогда как более мелкие продуктивные горизонты в тех же самых месторождениях дают нефть в 18—20° Вё. Точно так же в штате Оклахома наиболее глубокий горизонт, зале- [c.345]

    Исследовано [164] влияние ряда органических веществ на характеристики разделения 0,01 М раствора МаС1. В качестве мембран использовали ацетатцеллюлозные пленки производства ВНИИСС (г. Владимир). Рабочее давление составляло 5,0 МПа, температура 20 2°С. [c.194]

    Производство органических веществ зародилось очень давно, но первоначально оно базировалось на переработке растительного или животного сырья, состоявшей в выделении ценных веществ (сахар, масла) или их расщеплении (мыло, сиирт и др.). Органический синтез, т. с. получение болсс сложных веществ нз сравнительно простых, зародился в середине XIX века на основе побочных продуктов коксования каменного угля, содержавших ароматические соединения. Затем, уже в XX веке как источники органического сырья все большую роль стали и.грать нефть и природный газ, добыча, транспорт и переработка которых более экономичны, чем для каменного угля. На этих трех видах ископаемого сырья главным образом и базируется промышленность органического синтеза. В процессах их физического разделения, термического или каталитического расщепления (коксование, крекинг, пиролиз, риформинг, конверсия) получают пять главных групп исходных аеществ для синтеза многих тысяч других соединений  [c.8]

    Обратным осмосом и ультрафильтрацией, как отмечалось выше (стр. 180), можно разделять не только растворы электролитов, но также и смеси органических веш,еств. Примеры подобного разделения приведены на стр. 279— 284. Разделение растворов органических веществ обратным осмосом, влияние на продесс внешних факторов [(рис. IV-7), (IV-11) —(IV-13) и др.] могут быть объяснены с позиций капиллярнофильтрационной модели механизма селективной проницаемости. [c.217]

    Структура и свойства связанного слоя определяются природой и свойствами каждого компонента в слое. Так, в случае разделения водных растворов полярных органических веществ структура связанного слоя, в отличие от структуры слоя, состоящего в основном из молекул воды, имеет дефектные участки. Это о бусловлено некомненсврован-ностью меж[молекулярных сил в участках раствора, где молекулы воды связаны с гидрофобными частями молекул растворенных веществ. Такая структура 1менее прочна, так, как водородные связи молекул оды, прилегающих к дефектным участкам, ослабляются из-за понижения донорной спо собности ОН-групп, поскольку неподеленная пара электронов этих молекул перестает служить одновременно акцептором протонов в водородной связи. [c.220]

    Бестереков У. Исследование процесса разделения водных растворов некоторых органических веществ обратным осмосом. Клнд. дисс. МХТИ им. Д. И. Менделеева, 1077, [c.334]

    Обзор всех известных приемов азеотропной перегонки был бы слишком громоздким. Техническая литература, в том числе й патентная, по данному вопросу исключительно обширна. Уже приведенные примеры показывают, насколько велики возможности этого метода перегонки. Поэтому целесообразно указать лишь классы веществ, которые особенно выгодно разделять азеотропной перегонкой. Азеотропную перегонку широко применяют для обезвоживания органических веществ, таких как муравьиная кислота, уксусная кислота и пиридин, а также для выделения углеводородов из спиртов, очистки ароматических углеводородов, разделения моно- и диолефинов и т. д. Мэйр, Глазгов и Россини [41, 42], как и Берг [34], провели систематическое исследование процесса разделения углеводородов азеотропной ректификацией. [c.305]

    Одна из современных схем разделения газов, получаемых ири пяролпзе бензина, изображена иа рис. 12. Газ с установки пиролиза последовательно сжимается в пяти ступенях турбокомпрессора I, проходя после каждой из них водяной холодильник 2 и сепаратор 3, где он отделяется от конденсата (вода и органические вещества). Для лучшего отделения более тяжелых углеводородов конденсат с последующей ступени сжатия дросселируют и вэзвращают в сепаратор предыдущей ступени. Благодаря этому сэздается ректификационный эффект н в конденсате после пер- [c.48]

    Определенный интерес представляет недавно разработанный процесс Гранс/саг для получения хлористого винила из этана или его смесей с этиленом. Он отличается проведением реакции в расплаве катализатора, используемого для оксихлорирования, и разделением стадий хлорирования органических веществ и окисления расплава, благодаря чему не происходит побочного окисления этана, а продукты не разбавляются азотом, что облегчает их выделение. Схема реакционного узла установки Транскат изображена на ри . 53. В реакторе / отработанный расплав катализатора окис- [c.157]

    Современные методы спектрального анализа трудно применять к исследованию многокомпонентных систем, нефтей, нефтяных фракций, многокомпонентных полимеров. Исследования, проведенные в последние годы, позволяют выделить элекфонную феноменологическую спектроскопию (ЭФС) как перспективное направление в изучении совокупности свойств многокомпонентных органических веществ и оперативном контроле процессов химических и нефтехимических производств В отличие от обычного варианта электронной спектроскопии, в ЭФС вещество изучается как единое целое, без разделения его спектра на характеристические частоты или длины волн отдельных функциональных фупп или компонентов. ЭФС основана на установленны х нами закономерностях связи оптических характеристик поглощения (коэффициентов поглощения, коэффициентов отражения, цветовых характеристик и тд.) с физикохимическими свойствами системы. Разработанные на этих принципах исследовательские методы использованы в лабораторной и производственной практике. [c.224]


Смотреть страницы где упоминается термин Органические вещества, разделение: [c.272]    [c.327]    [c.184]    [c.222]    [c.323]   
Справочник по аналитической химии (1979) -- [ c.4 , c.6 ]

Справочник по аналитической химии (1975) -- [ c.320 ]

Справочник по аналитической химии Издание 4 (1971) -- [ c.320 ]




ПОИСК





Смотрите так же термины и статьи:

Разделение веществ



© 2025 chem21.info Реклама на сайте