Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Циклон вводом

    Для неподобных циклонов вводится коэффициент [c.28]

    Гуммированную поверхность проверяют искровым индуктором и при отсутствии каких-либо дефектов на обкладке ее вулканизуют. Для этого стакан ставят на его место, затем все фланцы перекрывают заглушками. В подготовленный таким образом циклон вводят пар через штуцер 4, конденсат выводят через штуцер 5, давление пара контролируют по манометру, вмонтированному в заглушку 3. Вулканизация обкладки длится 24 ч при давлении пара 0,1 ат. Вулканизованную обкладку проверяют искровым индуктором. [c.128]


    В низ реактора подается водяной пар для отпарки углеводородов и поддержания массы частиц кокса в псевдоожиженном состоянии. Воздух, требуемый для псевдоожижения и сжигания кокса, вводится в низ нагревателя 2 через горелку 8 и кольцевое пространство вокруг нее. Продукты коксования — газы и пары — поступают через циклоны 9 во фракционирующую колонну 3, расположенную над реактором. Дымовые газы отводятся через циклоны 10 и трубу 11 D атмосферу. [c.69]

    К — реактор 2 — регенератор 3 — отпарные секции 4 — поршневой воздушный компрессор —воздухоподогреватель 6 — решетка для распределения воздуха 7—внутренняя отпарная колонна —промежуточные решетки 9 — циклоны iO — паровой котел-утилизатор 11 — вспомогательная линия отвода катализатора 12—ввод агента для отпарки или продувки 13 — ввод свежего катализатора И — сухопарник. [c.148]

    I — корпус регенератора 2 — задвижка на линии газов регенерации з — первая ступень циклона 4 — вторая ступень циклона. Линии / — к регистратору температур Л — к газоанализатору 11 — аварийный впрыск воды в сборную камеру /V — к разбрызгивателям V — ввод водяного пара в кольцевой распределитель. VI — к центральному разбрызгивателю воды. [c.168]

    Продукты сгорания выходящие через внутренние циклоны 21 регенератора, охлаждаются в паровом котле-утилизаторе 22, проходят электроосадитель 23 и затем выпускаются через дымовую трубу в атмосферу. Перед электроосадителем в поток газов регенерации впрыскивается вода (в линию 2i) или вводится контролируемое количество водяного пара. Извлеченные в электроосадителе мелкие частицы катализатора возвращаются в регенератор струей воздуха по линии пневмотранспорта 25. [c.256]

    Для предотвращения догорания окиси углерода в двуокись предусмотрены ввод конденсата через восемь форсунок в зону сепарации и водяного пара под днище сборной камеры и в циклоны первой ступени. [c.225]

    Для одноступенчатых реакторов характерно расположение внутри аппарата узлов ввода и распределения сырья и катализатора, одно-, двух- или трехступенчатых циклонов со спускными стояками, десорбера, узла вывода продуктов крекинга, системы измерения основных параметров процесса. Отношение высоты аппарата к диаметру, характеризующее объем реакционной зоны и время контакта в ней сырья и катализатора, находятся в пределах (1,4—4,0) 1,0. В качестве примера конструктивного оформления реактора с кипящим слоем на рис. 12 приведен реактор каталитического крекинга установки 43-103. [c.27]


    Схема регенератора крекинг-установок приведена на рис. 14. Основными внутренними узлами регенератора являются корпус 1, циклонные устройства 7, вертикальные цилиндрические 2 и радиальные 3 перегородки, секционирующие зону выжига кокса, коллекторы подвода воздуха в зону регенерации катализатора 4, система ввода водяного пара под днище сборной камеры 8 и в циклоны первой ступени 7 для предотвращения догорания окиси углерода в двуокись. В отдельных случаях для съема избыточного тепла и упорядочения движения потока газовзвеси в зоне регенерации устанавливаются пароводяные змеевики. [c.41]

    Известны попытки использовать для выгрузки осадка пневмомеханических устройств во внутреннюю полость ротора вводят поворотный нож с полой опорой, которая соединена трубопроводом с пневмосистемой. При срезании осадок засасывается в пневмосистему и попадает в циклон, где оседает на стенках. Очищенный от частиц осадка воздух или газ вновь подается вентилятором в ротор центрифуги, где поддерживается избыточное давление 3—4 МПа. [c.326]

    Вертикальная сушильная колонна служит для высушивания микросферического катализатора или адсорбента в полете . Она представляет собой полый цилиндрический аппарат (рис. 34), в верхней части которого расположена сырьевая емкость 1, а нижняя часть снабжена инжектором 6 для транспортирования высушенного катализатора. Ввод дымовых газов осуществляется по газоходу, для равномерного распределения их по всему объему колонны внутри имеется обтекатель 4. Он вмонтирован так, что высушенный катализатор, ссыпаясь в инжектор 6, не попадает в газоход. Сушильная колонна соединена с циклоном для улавливания легких частиц катализатора, уносимых дымовыми газами в атмосферу. Внизу перед инжектором 8 установлен шибер 5, который закрывают во время продувки транспортной линии холодным воздухом. [c.139]

    На рис. НО приведена конструкция циклонной топки, где газовоздушная смесь из горелки и вторичный воздух вводятся тангенциально к стенке камеры горения. Отвод теплоносителя осуществляется через отверстие, расположенное в центре торцевой стенки топки. При таком конструктивном оформлении осуществляется интенсивное перемешивание газовоздушного потока и получение теплоносителя одинаковой температуры по всему объему. Топка компактна и показывает хорошие эксплуатационные качества. Топка футеруется огнеупорным кирпичом класса А и заключается [c.270]

    Сжигание расплавленной серы осуществляют в циклонных и камерных печах, которые оборудованы специальными пусковыми горелками (форсунками) для сжигания топлива с целью предварительного нагрева футеровки реакционного объема до 600 С только после этого вводится расплавленная сера, воздух и начинается процесс сжигания. [c.39]

    Принцип кипящего слоя увеличивает гибкость процесса, но вместе с тем требуется высокая степень автоматизации и тщательная регулировка его. В частности, необходимо соблюдать постоянное оптимальное расстояние от верхнего уровня кипящего слоя кокса в реакторе до ввода его в циклон. Несоблюдение этого условия приводит к расстройству технологического режима процесса, нарушениям или даже прекращению подачи теплоносителя из реактора в нагреватель кокса, к переполнению реактора коксом и выбросам его в нижнюю часть колонны [165]. [c.129]

    При равномерно распределенном по длине циклона вводе топлива перераспределение вторичного воздуха изменяло полноту тепловыделения в циклоне, не меняя характера поля концентраций на выходе (опыты № 2, 5, 6, табл. 3). Лучщим по полноте тепловыделения в циклоне (ф =0,926) показал себя режим с распределением вторичного воздуха по со плам 10 45 45 0%. [c.135]

    Сепараторы, показанные на рис. 2.6, представляют собой центробежные многопатрубковые (мультициклонные) конструкции, из которых первые два не имеют устройств для предварительного отделения примесей. В первой конструкции (рис. 2.6, а) использована батарея циклонов, ввод газа в каждый циклон осуществляется непосредственно из трубы входа газа. Газоочистители аппарата на рис. 2.6, б представляют собой циклонные элементы противоточной конструкции, смонтированные на решетке, расположенной ниже патрубка ввода газа. Выходные трубки из этих элементов закреплены в решетке, расположенные выше патрубка ввода газа. Опыт применения сепараторов такой конструкции показал, что завихрители могут забиваться различными примесями, поэтому одна из конструкций (рис. 2.6, в) выполнена с камерой предварите.тьного отделения примесей и расположением завихрителей циклонов у верхней решетки. Однако при использовании этого аппарата также наблюдаются случаи забивания завихрителей циклонов и нарушения эффективной работы аппарата. В аппаратах, основная сепарационная секция которых выполнена в виде прямоточных центробежных элементов (рис. 2.6, г, д, е, ж), предусмотрен отсос части газа (рис. 2.6, г, Э) и рециркуляция (рис. 2.6, е, ж). В сепараторах конструкции, приведенной на рис. 2.6, г, применяют патрубки с осевыми и тангенциальными завихрителями. Предварительную очистку газа осуществляют 22 [c.22]


    Адсорбер с общим кипящим слоем представляет собой пустотелый аппарат с распределительной тарелкой или решеткой 1, установленной в нпжней части. Через П1туцер 2 подается га , который, цосту-пает через отверстия газораспределительной тарелки в слой. Адсрр-бент вводится в кипящий слой через стояк 3. Газ после адсорбции проходит через циклон для отделения пыли и вы водится через штуцер 4, а адсорбент выводится через нацорний стояк 5 и направляется на десорбцию. , [c.259]

    Перегонная аппаратура может быть выполнена из материалов хастеллой А и дурихлор, но чаще употребляют монельметалл или никель. Метод горячего хлорирования за последние годы в основном не изменялся, но появилось множество вариантов конструкции реактора. При этом стремились снизить образование продуктов присоединения при смешении пропилена с хлором. Например, сконструирован реактор типа циклона, позволяющий работать с более низким соотношением пропилен хлор (3 1) [13—15]. В этот реактор оба газа вводятся раздельно по касательной к противоположным сторонам циклона. Предложены также [c.181]

    Технологическая схема секций кре — кинга и ректификации установки Г —43 — 1( 7 представлена на рис.8.9. Гидроочи — щенное сырье после предварительного подогрева в теплообменниках и печи П смешивается с рециркулятом и водяным mipoM и вводится в узел смешения прямо — точного лифт —реактора Р—1 (рис. 8.10). Контактируя с регенерированным горячим цеолитсодержащим катализатором, сырье испаряется, подвергается катализу в лифт —реакторе и далее поступает в зону форсированного кипящего слоя Р — 1. Про — дукты реакции отделяются от катализа — тс.рной пыли в двухступенчатых циклонах и аоступают в нижнюю часть ректифика — ц)[онной колонны К—1 на разделение. [c.134]

    Центробежные обеспыливающие устройства (циклоны). Широко применяют для очистки различных газов от пыли, в частности, в процессах каталитического крекинга и дегидрирования бутана в кипящем слое катализатора. Частицы пыли выделяются в циклоне под действием центробежной силы в нроцессе вращения газового потока в корпусе аппарата. Циклон (рис. 7) состоит нз цилиндричсско1 трубы и суживающегося книзу конуса. Запыленный газ вводится в циклон по спирали (таигеици-альный ввод). Под действием центробежной силы в процессе вращения газового потока в корпусе аппарата частицы пыли отбрасываются к стенкам циклона и ио ним опускаются в коническую часть. Эффективность очистки зависит от скорости газового потока (при прочих равных условиях) чем выше скорость газа, тем выше ее эффективность, тем меньше габариты аппарата, [c.42]

    Внизу регенератора расположены распределительная решетка,, а также сливные вертикальные перегородки и патрубки для ввода и вывода потоков. Устройство одного из крупных регенераторов с обслуживающими его двухст пенчатыми циклонами показано на фиг. 49. Газы выводятся сверху регенератора но выходе их из циклонов. Объемы и размеры регенераторов зависят от их производительности по количеству сжигаемого кокса. Регенераторы, в которых сжигается 3—4 т кокса в час, имеют размеры диаме1р 6—8 м, общая высота от 10 до 18 м. [c.127]

    I — реактор 2 — регенератор — насос для подачп воды в охлаждающие зм( евик1< регенератора- 4 — воздухоподогреватель 5 — воздуходувка 6 — дозер системы пневмотранспорта катализатора 7 — Оункер-сепаратор — хранилище для свежего катализатора 9— хранилище для катализатора, используемое в периоды остановки установки, 10 — циклон II — отвеиватель- Линии I — загрузка реактора И — продукты крекиага — пары и газы 1И — водяной пар в паропроводную сеть завода IV — питательная вода для котла-утилизатора V — топливный газ VI — ввод водяного пара для создания затвора VII — ввод водяного пара для продувки катализатора и создания нижнего гидравлического затвора VIII — водяной пар /X — катализаторная мелочь X — газы регенерации. [c.244]

    В реакторе можно выделить следующие зоны зона г ввода и распределения сырья и катализатора, реакционная зона в, сепара-ционная зона б, зона а размещения циклонных устройств и отпар-ная зона д. [c.220]

    В лифт-реакторе I (рис. 4) с помощью многофорсуночной системы ввода достигается быстрое и полное диспергирование и испарение сырья. Температура процесса регулируется в зависимости от характеристик перерабатываемого сырья. Продукты крекинга отделяются в циклонах, расположенных в бункере-отстойнике 2, в котором происходит отпарка отработанного катализатора. В бункере-отстойнике предусмотрены предварительная отпарка катализатора в его верхней зоне и полная отпарка катализатора в секционированном устройстве, снабженном перегородками. [c.12]

    Испытание катализаторов на приборе осуществляют следующим образом. Анализируемую пробу порошка, взвешенную с точностью 0,01 г, вводят через патрубок 8 п напорный стояк 1. Сопло 3 при этом предварительно закрывают штоком 4. Затем включают электромотор и после налаживания циркуляции воздуха по линии воздуходувка — воздухопровод — транспортная трубка — циклон— воздуходувка резко отводят вниз шток и одновременно пускают секундомер. Высыпающийся из сопла напорного стоЯ Ка катализатор подхватывается воздухом и транспортируется в циклон, из которого он возвращается в напорный стожк. В результате циркуляции катали- [c.66]

    Для улавливания частиц катализатора, унесенных паровой и газовой фазадш с поверхности кипящего слоя, в реакторе и регенераторе установлены циклопы. Работа циклонов в основном зависит от их конструкции и от линейной скорости газопаровой фазы при входе в циклоны. Вместе с тем режим сепарации катализатора в циклонах зависит от стабильности работы реактора, плотности и размеров част1Щ катализатора, а также от расстояния между поверхностью кипящего слоя и плоскостью ввода смеси в циклоны. [c.166]

    Состояние киг(ящ< го слоя теплоносителя в реакторе поддерживалось вводом необходимого количества перегретого водяного пара из пароперегревателя 11 и частично — продуктами разложения подаваемого сырья. 11[)одукты пиролиза, п )ойдя циклон, по шлемовой трубе поступали в промывную колонну в, гдо отделялись тяжелые смолистые вещества и увлеченная коксовая НЫЛ1., а пары нродуктов подавались в колденсатор-холоди.ит.-ник 7, в котором они конденсировались и выводились пару у. с [c.255]

    Детальный расчет реактора для получения фталевого ангидрида приводят Беранек, Сокол и Винтерштейн исходные данные несколько отличаются от приводимых фирмой Sherwin—Wiliams. Псевдоожиженный слой нашел самое широкое применение на установках каталитического крекинга широкой фракции. Схема такой установки приведена на рис. IV-47 . Установка состоит из двух основных частей — реактора и регенератора. Разложение тяжелых углеводородов на более легкие происходит в реакторе, работающем на алюмо-кремниевом катализаторе диаметром зерен 20—100 мкм. Поток, поднимающий частицы катализатора, создается углеводородными парами, вдуваемыми снизу. Прореагировавшие углеводородные иары проходят через циклоны, отделяющие унесенную пыль и возвращающие ее в реактор. В процессе крекинга катализатор покрывается пленкой кокса. Для восстановления его направляют в регенератор по V-образной трубе. Перед входом в регенератор в трубу вводится воздух на этом участке смесь катализатора с воздухом обладает меньшей плотностью, чем в колене, выходящем из реактора. Вследствие этой разности плотностей катализатор движется по У-образной трубе. В регенераторе пленка кокса выжигается, после чего частицы катализатора возвращаются в реактор по другой V-образной трубе. Каталитический крекинг происходит при температуре 460—510°С и небольшом давлении, не превышающем 1,8 ат. [c.358]

    Высота установки модели IV на 30% меньше высоты типичной установки с пылевидным катализатором. Сырье—газойль— вводится в линию горячего регенерированного катализатора перед входом в реактор. Пары из реактора уходят через циклоны в двухступенчатый сепаратор, который улавливает угле-ченный катализатор и возвращает его в кипящий слой. Продукты крекинга разделяются в обычной ректификационной колонне. Отработанный катализатор после отпаривания с его поверхности оставшихся углеводородов транспортируется в регенератор потоком воздуха, подаваемым в каталнзаторопровод ниже регенератора. Основное количество воздуха подается [c.53]

    В реакторе расположена секция для отпаривания катализатора, которая отделена от рабочей зоны перегородкой с лрямоугольными прорезями, через которые катализатор поступает в секцию на отпаривание. В нижней части секции помещен круговой распределитель водяного пара, благодаря чему удается избежать слеживания катализатора. От- работанный катализатор поступает в ре- ц генератор по стояку, расположенному внутри последнего. Внизу стояка устанавливается регулирующий запорный (игольчатый) клапан. Воздух вводится под распределительную рещетку регенератора. В реакторе установлены два одноступенчатых циклонных сепаратора. Давление в системе вверху реактора— 0,7 ати, внизу —0,96 ати вверху регенератора — 1,23 ати. Давление воздуха на выкиде воздуходувки — [c.55]

    Дымовые газы перед выбросом их в атмосферу проходят очистку в циклонах НИИОГАЗ ЦН-15. Замер темнературы и разрежения в шахте предусмотрен на трех горизонтах. Кроме этого, предусмотрен замер температуры отходящих газов и разрежения на верху печи. Подача газа и первичного воздуха производится в двух ярусах через специальные балки, охлаждаемые водой. На каждом ярусе установлено по две балки, причем направление балок одного горизонта перпендикулярно к направлеппю балок другого. На каждом горизонте предусмотрено но шесть периферийных газовых вводов для возможности подачи незначительного количества газов. [c.188]

    Поливинилхлорид (ПВХ) из хранилища 1 (рис. 16) через бункер-циклон 2 и барабанный питатель 3 пневмотранспортируется в двухкорпусный вихревой смеситель, состоящий из смесителя с обогревом 4 и смесителя с охлаждением 5. ПВХ, унесенный воздухом из бункера-циклона 2, отделяется в рукавном фильтре 6 и поступает в общий трубопровод ПВХ. Стабилизатор (меламин) транспортером подается через бункер-циклон 7 в шаровую мельницу 8, где дробится и смешивается с небольшим количеством ПВХ. Полученная стабилизирующая смесь из мельницы 8 подается в приемник 9, а затем тарельчатым питателем 10 в смеситель 4, в который вводятся стеарин из пла-вителя И и трансформаторное масло, служащие для пластификации композиции при переработке. [c.29]

    Для предотвращения уноса катализатора с парами нефтепродуктов внутри аппарата размещено семь сдвоенных циклонов со спускными стояками. В верхней части имеется камера сбора паров. В реакционной зоне аппарата и в пространстве между защитной перегородкой и сборной камерой находится змеевик для нагрева водяного пара, подаваемого в зону над защитной перегородкой. Нижняя часть реактора (десорбер), имеющая диаметр 3000 мм, предназначена для отпарки из катализатора остатков нефтепродуктов. Для улучшения распределения движущегося вниз катализатора и контактирования с поднимающимся вверх водяным паром по сечению отпарной зоны размещены сегментнохордовые элементы 8, под нижние ряды которых вводится водяной пар. [c.392]


Смотреть страницы где упоминается термин Циклон вводом: [c.211]    [c.211]    [c.104]    [c.39]    [c.185]    [c.6]    [c.8]    [c.9]    [c.24]    [c.37]    [c.144]    [c.154]    [c.62]    [c.247]    [c.73]    [c.28]    [c.394]   
Теоретические основы типовых процессов химической технологии (1977) -- [ c.237 ]




ПОИСК





Смотрите так же термины и статьи:

Циклон



© 2024 chem21.info Реклама на сайте