Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Изменение свойств катализаторов в процессе крекинга

    Например, отмечалось увеличение скорости реакции дегидрогенизации циклогексана, этилциклогексана, а также дегидрогенизации и дегидратации спиртов в первые часы работы катализаторов с активным металлическим компонентом [65, 101—104], Временное увеличение активности катализатора отмечалось в процессе ароматизации парафиновых углеводородов (14, 24, 105]. При крекинге углеводородов на алюмосиликатных катализаторах отмечалось сохранение каталитической активности вплоть до 5—10% увеличения веса катализатора [106, 107]. Отсутствие отравляющего действия углистых отложений на катализаторе в начальных стадиях угле-накопления отмечалось и другими авторами [108]. Сохранение специфики природы различных катализаторов (медь, силикагель, кварц, а также медь, серебро, золото, железо, кобальт, никель, окись ванадия на силикагеле) после сильного обугливания было отмечено в случае пиролиза бензола (50, 56, 59]. В ряде случаев отмечено изменение специфичности катализатора по мере обугливания. Например, изменяется соотношение между выходами олефинов и арп-матики по мере обугливания катализатора [24, 105]. Двуокись титана, проявляющая в свежеприготовленном состоянии дегидрирующие свойства в реакции с изо-пропиловым спиртом, становится типично дегидратирующим катализатором после обугливания в ходе дегидрогенизации [109]. То же наблюдается с окисью иттрия [ПО, 111] и с некоторыми другими катализаторами. [c.286]


    В связи с внедрением в промышленности новых процессов переработки, а также изменением требований к ассортименту и качеству нефтепродуктов предлагается пересмотреть программу исследования нефтей с целью расширения и уточнения ее [21], Расширенной программой исследования нефтей предусматривается определение кривых разгонки нефти, устанавливающих зависимость выхода фракций от температуры кипения и определяющих их качество давления насыщенных паров содержания серы асфальтенов смол силикагелевых парафинов кислотного числа коксуемости зольности элементного состава основных эксплуатационных свойств топливных фракций (бензинов, керосинов, дизельного топлива) группового углеводородного состава узких бензиновых фракций выхода сырья для каталитического крекинга, его состава и содержания в нем примесей, дезактивирующих катализатор потенциального содержания дистиллятных и остаточных масел качества и выхода остатка. [c.35]

    Таким образом, появление стадии окислительной регенерации значительно усложняет технологические схемы и аппаратурное оформление процессов. Она существенно влияет на их экономику, а для каталитического крекинга даже определяет рентабельность и конкурентоспособность различных вариантов этого процесса. История создания и развития таких важных каталитических процессов нефтепереработки и нефтехимии, как крекинг, риформинг, дегидрирование, гидрокрекинг и гидроочистка неразрывно связана с решением проблем окислительной регенерации используемых катализаторов. Естественно, чт0 эта стадия привлекает к себе пристальное внимание исследователей уже не одно десятилетие. Результаты ранних исследований закономерностей окисления кокса обобщены в работе [2], опубликованной 20 лет назад. С тех пор в научной литературе накоплены новые сведения по теории и практике окислительной регенерации катализаторов и назрела необходимость систематизировать и обобщить имеющийся материал, рассмотреть в тесной взаимосвязи характеристики кокса, образующегося на катализаторах, механизм и кинетику его окисления изменение свойств катализаторов при регенерации, основы промышленной технологии и аппаратурного оформления процесса. [c.4]

    Приведенные в табл. 42 данные, характеризующие скорость изменения свойств катализатора в процессе каталитического крекинга данного сырья, показывают, что за первые 188 часов индекс каталитической активности снизился от 17,2 до 10,2 и затем в течение последующих 114 часов стабильно держался на этом уровне. Стабилизация уровня каталитической активности подтверждается и -другими показателями крекинга эталонного сырья. Так, количество неразложившегося при крекинге эталонного сырья на свежем катализаторе составляло 71,9% за 188 часов работы количество неразложившегося сырья увеличилось до 82,0% и до конца испытания оставалось неизменным. За это же время работы катализатора значительно снизился и удельный вес газа — 0,910 до [c.106]


    Важным свойством промышленных цеолитсодержащих катализаторов является их высокая стабильность в процессе эксплуатации [49—50]. При этом особенностью эксплуатационных свойств цеолитсодержащих катализаторов является улучшений селективности их действия по мере стабилизации свойств ири отсутствии искажающего влияния отложений металлов из сырья крекинга и остаточного кокса Иллюстрацией изменения свойств при эксплуатации являются данные ио применению шарикового цеолитсодержащего катализатора Цеокар-2 при крекинге тяжелого малосернистого сырья (вакуумного дистиллята) из парафинистых нефтей (рис. 3.30). Удельная поверхность снизилась более чем вдвое, а удельный объем пор уменьшился на 35—40% (отн.). Вместе с тем активность в крекинге эталонного сырья изменилась незначительно. При испытании цеолитсодержащих катализаторов без обновления [50] активность их постепенно снижается (рис. 3.31). [c.60]

    Стабильность свойств катализатора есть способность катализатора сохранять свои качества и главным образом каталитическую активность в процессе работы и в течение относительно длительного отрезка времени. Для катализатора каталитического крекинга обычно характерно сравнительно быстрое снижение его качеств в начальный период работы и более медленное изменение свойств в последующем. [c.208]

    В начале 60-х годов были открыты новые свойства цеолитов (молекулярных сит) для каталитических процессов переработки нефтяного сырья. В 1962 г. учеными корпорации Мобил была разработана технология применения цеолитов в качестве катализаторов процесса каталитического крекинга в псевдоожиженном слое катализатора. Цеолитсодержащие катализаторы крекинга-это новая веха в истории развития нефтепереработки. Они позволили резко увеличить выход высокооктанового бензина из тяжелых нефтяных фракций при небольших изменениях в конструкции установки (ввод лифт-реактора). [c.170]

    Обобщаются результаты исследований природы каталитического дейст ВИЯ цеолитов и катализаторов крекинга на их основе, намечаются пути улучшения показателей процесса крекинга на промышленных установках. Основное внимание уделено факторам, определяющим активность и селективность катализаторов крекинга, а именно физико-химическим основам изменения свойств фожазитов в различных условиях высокотемпературной обработки, влиянию термообработки на каталитические свойства цеолитов с различным химическим и катионным составом, а также физико-химическим основам взаимного влияния кристаллического и аморфного компонентов в алюмосиликатных катализаторах крекинга. [c.191]

    В процессе изучения влияния условий старения на активность катализатора было установлено, что при этом изменяется и его селективность — на образцах катализаторов, после их термической и термопаровой обработки, при крекинге образуются более непредельные продукты, выход кокса и газа уменьшается в большей степени, чем выход бензина. В работе [62] такое изменение селективности объясняется наличием на поверхности катализатора по крайней мере двух видов активных центров. Одни из них ответственны за реакции крекинга, и в процессе термической или термопаровой обработки их число на единицу поверхности катализатора не меняется. Другие катализируют реакцию перераспределения водорода, и при спекании катализатора их свойства и число активных центров на единицу поверхности существенно изменяются. [c.42]

    Влияние объемной скорости. По литературным данным, объемная скорость подачи сырья может в процессах каталитической очистки меняться в широких пределах без существенного влияния на степень обессеривания. Высокие объемные скорости неблагоприятны для термического разложения и поэтому способствуют удлинению срока жизни катализатора. Нами изучалось изменение объемной скорости в пределах от 0,6 до 4,0 (табл. 4). Данные этой таблицы свидетельствуют о незначительном изменении анти- детонационных свойств бензинов при изменениях объемной скорости в пределах 0,6—4,0. В дальнейшем нами была принята объемная скорость, соответствующая проектным условиям работы типовой установки каталитического крекинга и равная 0,6. [c.261]

    Таким образом, на установках каталитического крекинга катализатор находится в весьма тяжелых усдониях. Свежий катализатор, догруженный в установку, довольно быстро изменяет свои свойства [7, 8]. Прежде всего уменьшаются его каталитическая активность и селективность. Одной из причин ухудшения свойств катализатора является изменение его удельной поверхности, структуры пор и других физических свойств ( старение катализатора ). Другая причина — отравление катализатора, обусловленное изменением химических и каталитических свойств его поверхности. Отравление катализатора может быть обратимым. В этом случае активность катализатора после удаления каталитических ядов полностью восстанавливается. В частности, азотистые основания и коксовые отложения обратимо отравляют алю-мосиликатный катализатор — при окислительной регенерации они лолностью сгорают. При необратимом отравлении каталитические яды не удаляются на какой-либо стадии процесса и постепенно накапливаются на поверхности катализатора. Такими ядами являются металлы и их соединения, содержащиеся в сырье. Накопление металлов на поверхности катализатора приводит к увеличению образования кокса, легких газов и к уменьшению выхода бензина. В результате существенно ухудшаются технико-эконо-мические показатели процесса крекинга. [c.7]


    Широкое применение катализаторов в нефтепереработке (в частности, в процессах переработки высокосернистых нефтей) н нефтехимии обусловливает большой интерес исследователей к изучению свойств катализаторов, их изменений в процессе эксплуатации, подбору новых катализаторов и улучшению существующих. Интенсивное развитие исследований в этом направлении объясняется тем, что экономичность каталитических процессов в шервую очередь зависит от катализатора — его активности, селективности, стабильности, механических свойств, стоимости и т. д. Например, из общих эксплуатационных затрат производства бензина путем каталитического крекинга вакуумного газойля около 40% составляют затраты, непосредственно связанные с расходом катализатора. Совершенствование и удешевление катализаторов является темой исследования больших коллективов как у нас, так и за рубежом. В результате появились новые катализаторы, характеризующиеся различной поровой структурой, химическим составо.м, носителями и т. д. [c.96]

    Способы производства катализаторов крекинга трех основных типов различны. Называемые природными катализаторы получают путем обработки природных глин различными методами/предназначенными для изменения их химических и физических свойств. К этой группе относятся катализаторы фильтрол и бокситый катализатор процесса сайкловершн. Синтетические катализаторы вырабатывают взаимодействием водных растворов. исходных химических продуктов высокой чистоты полусинтетические получают при помощи различных запатентованных сочетаний обоих рассмотренных выше процессов. [c.180]

    Поскольку дезактивация катализаторов отлагающимися на ни тяжелыми металлами в процессе каталитического крекинга оста точного нефтяного сырья ведет к уменьшению выхода бензиново фракции и увеличению нежелательных в процессе кокса и воде рода, а обработка катализаторов после отравления пассиваторам приводит к значительному увеличению выхода бензиновой фрак ции и изменению фрагментного состава, целесообразно заране изменять свойства катализатора путем предварительной обработк пассиватором, что позволяет повысить стойкость катализатора отравлению металлами [c.326]

    Обсуждая крекинг индивидуальных парафинов, мы рассмотрели различные гипотезы относительно начальной стадии процесса. В случае крекинга газойлей сложность возрастала из-за того, что это сырье содержит компоненты различной молекулярной массы. В результате основное обсуждение крекинга газойлей сосредоточилось на поверхностных характеристиках общей конверсии или суммарной селективности. Несомненно, что если бы были установлены кинетические параметры крекинга газойлей, можно было бы получить большой объем информации, изучая их изменение в зависимости от составов сырья и катализатора. Корма и Войцеховский [43] попытались объяснить влияние активных центров различных типов при каталитическом крекинге газойля, сопоставляя кинетические параметры, полученные с использованием модели ВПП, с экспериментальными данными по крекингу газойля на двух различных цеолитных катализаторах. Так как в обоих случаях применялось одно и то же сырье, ясно, что все различия в параметрах (табл. 6.1) должны быть связаны со свойствами катализаторов и, в первую очередь, с природой их активных центров. На основании данных ИК-спектроскопии и изучения крекинга кумола, как модельной реакции, обнаружено, что цеолит HY содержит больше центров Бренстеда и меньше Льюиса, чем LaY [58]. С другой стороны, исследование распределения кислотной силы методом Бенеши позволило установить, что число активных центров с рК<6,8 больше па цеолите НУ, тогда как ЬаУ содержит больше сильных кислотных центров с рК<1,5 [43]. Это те самые сильные центры, которым приписывают основную активность в ка-(галитическом крекинге парафинов [59]. В свете этих данных можно представить следующую схему крекинга обычного парафинис-froro газойля. [c.132]

    Активаторы возникновения кислотных свойств цеолитов. По мнению многих авторов [3, 14—16[, каталитическая активность обусловлена действием находящихся в структуре цеолита кислотных центров, независимо от их происхождения. Убедительным доказательством справедливости этих представлений являются опыты по промотированию ммоль/г катализатора) реакции крекинга кумола при 430 °С на декатионированном цеолите типа Y. Промотир ование способствует увеличению активности катализатора в два р аза по сравнению с исходной при этом изменения энергии акти вации процесса не наблюдается. [c.149]

    Дальнейшие систематические исследования каталитических свойств природных алюмосиликатов (флоридина и кавказской активной глины) проводит С. В. Лебедев [12, 13]. Он последовательно вскрывает глубокие возможности низкотемпературных каталитических преобразований углеводородов над природными катализаторами — флоридинами, кавказскими глинами и каолинами — в температурном интервале от —80 до 260 С [14—22]. С. В. Лебедев придавал особое значение активности катализатора. Он первый применил искусственную тепловую активацию природных г.тии и изучил механизм изомеризации олефипов под воздействием алюмосиликатов, показав способность алюмосиликатов вызывать по только неремоп ение двойной связи в цепи молекулы, но и скелетньсе изменення, приводящие к переходу несимметричной структуры олефипов в симметричную. Наконец, с исчерпывающей полнотой С. В. Лебедев доказал, что в области температур выше 250 °С парофазный процесс катализа над природными алюмосиликатами является по существу типичным сложным процессом каталитического крекинга, когда гладкая деполимеризация полимерных олефинов переходит в совокупность реакций дегидрогенизации, распада на элементы и глубокого дегидроуплотнения молекул с одновременным образованием парафинов. [c.158]

    Закономерности образования кокса на катализаторах рассматриваются в объеме, необходимом для анализа закономерностей процесса окислительной регенерации. Для более подробного ознакомления авторы отсылают читателя к монографии Буянова P.A. [3]. В связи с отсутствием новых данных при рассмотрении некоторых вопросов окислительной регенерации катализаторов крекинга использованы результаты, опубликованные одним из авторов ранее (Масагутов Р. М. Алюмосиликатные катализаторы и изменение их свойств при крекинге нефтепродуктов,-М., Химия, 1975. 272 с.). [c.4]

    Недеструктивная, именуемая гидрированием, проводится при умеренной температуре от 200 до 420° С под различным давлением, в условиях, определяемых активностью катализатора и свойствами гидрируемого сырья. Назначение — насытить сырье водородом без изменения числа углеродных атомов в молекуле (т. е. процесс может быть отнесен также к процессам избирательного катализа). Применяется для гидрирования дшгзобутена в изооктан, иногда крекинг-бензина. Предлагалась для обессеривания моторных топлив гидрирования ароматизированных газойлей, смазочных масел и др. [c.13]

    В сложных процессах органического катализа, к каким, например, относятся каталитический крекинг нефтяных углеводородов, каталитический синтез дивинила из спирта, каталитические синтезы на базе водяного газа и другие, зачастую наблюдается явление закоксовывания, обуглероживания катализатора. Сущность этого явления заключается в том, что на катализаторе происходят химические превращения органических соединений, сопровождающиеся выделением углерода или сложных углеродистых соединений, которые отлагаются в порах катализатора и блокируют его поверхность. Следовательно, здесь происходит воздействие каталитического процесса на катализатор, сопровождающееся изменением его химических, адсорбционных, а зачастую и каталитических свойств, так как закоксованный катализатор, как правлло, по каталитической активности и селективности отличается от незакоксованного. Это приводит к необходимости регенерации сильно закоксованных катализаторов с удалением кокса посредством сжигания его кислородом воздуха. [c.187]

    Главной целью процесса гидрокрекинга является уменьшение молекулярного веса погона нефти с максимальным выходом продуктов крекинга и с минимальным образованием кокса. Однако наиболее важным использованием гидрообработки на нефтеперерабатывающих заводах в настоящее время является очистка различных низкосортных продуктов с небольшим изменением или без изменения молекулярного веса. Необходимость такого качественного улучшения вызвана несколькими факторами, которые мы вкратце упомянем. Присутствие ароматических структур во фракциях смазочных масел обусловливает очень большое уменьшение вязкости масла с увеличение.м температуры. Гидрогенизация этих колец в гексагидропроизводные улучшает качество смазочных масел, поэтому некоторые компании начали проводить гидрогенизацию в мягких условиях, чтобы улучшить вязкостные свойства выпускаемых ими масел. Подобным же образом улучшаются топливные качества таких дистил-лятных топлив, как дизельное и форсуночное топливо, керосин и т. д., если содержание ароматики в них уменьшено до минимума. Это наряду с высоким выходом продуктов может достигаться при помощи современных методов гидрообработки. Наиболее важная область применения обработки водородом развилась в связи с увеличением использования каталитического риформинга. Катализаторы, используемые для риформинга, чувствительны к неуглеводородным примесям. Например, катали- [c.588]

    Увеличение температуры крекинга из условий теплового баланса влечет за собой, как правило, повышение и температуры регенерации катализатора, которое требует повышать термостабильность катализатора. Увеличение объемной скорости процесса можно позволить, применяя только высокоактивный катализатор. С другой стороны, не исключено влияние на выход бутиленов и свойств самого катализатора, например, изменением силы его активных центров (пример — цирконийсипикат-ные катализаторы), применением в той или иной форме стабилизации катализатора или, наконец, применением в композиции катализатора наряду с цеолитом типа Y второго узкопористого цеолита (тип ZSM) как способного селективно крекировать легкие нормальные парафиновые углеводороды, к тому же еш е снижающие в бензине октановую характеристику. [c.180]

    Для определения кислотности в водных растворах были применены самые различные методы вплоть до адсорбции из газовой фазы. Колориметрический метод был применен [126] для определения кислотности в виде функции Н . В гомогенных системах определение кислотности для протонных кислот в каком-либо данном растворителе является более простым, чем для льюисовских кислот. Уоллинг [126 понимает кислотность поверхности как ее способность превращать адсообированное нейтральное основание в соответствующую кислоту. Силу кислоты можно определить по изменению цвета, если незаряженный индикатор адсорбируется на поверхности. Применяя ряд индикаторов, основность которых по отношению к воде известна, Уоллинг классифицировал поверхности по их кислотной силе. Следует отметить, что результаты зависят отчасти от среды, из которой адсорбировался индикатор, т. е. окраска получается различной, если, например, к растворителю — изооктану — добавить ацетон или воду. Полагают, что все изменения цвета являются результатом перехода одного протона, однако в недавно появившейся работе [127] показано, что индикатор я-диметиламиноазобензол имеет вторую область изменения цвета, вызванную присоединением другого протона. В случае окислов кислотность зависит от количества адсорбированной воды, и это понятно, так как вода может образовывать иоликислоты. Указанные результаты полуколичественные нужно учи тывать, что измерения кислотности проводят при комнатной температуре и они зависят от растворителя, а каталитические процессы часто осуществляются при высоких температурах поэтому нельзя ожидать точного соответствия между кислотностью и каталитической активностью. На основании измерений, проведенных при помощи индикаторного метода МзОд—ЗЮа, MgO—5102 и обработанные кислотами глины относят к сильным поверхностным кислотам, а А12О3 и ЗЮа считают менее кислыми. Это согласуется с предположением, что катализаторы крекинга должны быть кислыми. Следует отметить, что сила кислот относительна если углеводороды можно рассматривать как основания в растворах кислот фтористоводородной или 1000/о-ной серной, это не означает, что они будут основаниями в отношении поверхности алюмосиликата, которая обладает кислыми свойствами по отношению к п-диметиламиноазобензолу и другим индикаторам. [c.89]


Смотреть страницы где упоминается термин Изменение свойств катализаторов в процессе крекинга: [c.231]    [c.92]    [c.199]    [c.152]    [c.18]    [c.195]    [c.65]    [c.42]    [c.54]    [c.48]    [c.187]   
Смотреть главы в:

Каталитические процессы в нефтепереработке -> Изменение свойств катализаторов в процессе крекинга




ПОИСК





Смотрите так же термины и статьи:

Изменение свойств

Катализаторы крекинга

Крекинг-процесс

Процесс свойства



© 2025 chem21.info Реклама на сайте