Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплообмен параметры

    Свойства среды и ее параметры предъявляют свои требования к конструкции теплообменных аппаратов. Необходимо учитывать технологическое назначение теплообменников различают аппараты для процесса теплообмена без изменения агрегатного состояния продуктов, конденсаторы, испарители и реакционные аппараты, сопровождающиеся интенсивным теплообменом [21]. [c.82]

    Выбор давлений и температур в колоннах также обусловливается требованиями к качеству и состоянию целевых продуктов, составом исходного сырья, располагаемыми хладо- и теплоносителями и т, п. За исходный параметр часто принимают температуру конденсации паров в верхней части колонны при атмосферном давлении. Если температура конденсации паров при атмосферном давлении слишком низка, давление повышают. Например, пропан при атмосферном давлении конденсируется при —42 °С, при повышении же давления до 1,9 МПа его температура конденсации становится равной +55 °С. Снижение давления в колонне ниже атмосферного (вакуум) диктуется [ге-обходимостью уменьшения температуры кипения нижнего продукта либо из-за технических трудностей достижения требуемого уровня температуры, либо из-за разложения продукта. Выбор температур определяется также рациональной разницей температур охлаждающей среды и паров в верхней части колонны, теплоносителя и остатка — в нижней части колонны, ибо от этого во многом зависит поверхность теплообменных аппаратов. [c.106]


    Лисиенко В. Г. Определение основных массовых и энергетических потоков в пирометаллургических процессах на основе взаимосвязанных массо- и теплообменных параметров эффективности // Вклад молодых специалистов в развитие научно-технического прогресса в металлургии / Тез. докл. Свердловск Свердловск, дом техники НТО, 1990. С. 102-104. [c.375]

    Однако на этой стадии расчета точное определение коэффициента теплопередачи невозможно, так как а и 2 зависят от параметров конструкции рассчитываемого теплообменного аппарата. Поэтому сначала на основании ориентировочной оценки коэффициента теплопередачи приходится приближенно определить поверхность и выбрать конкретный вариант конструкции, а затем провести уточненный расчет коэффициента теплопередачи и требуемой поверхности. Сопоставление ее с поверхностью выбранного нормализованного теплообменника дает ответ на вопрос о пригодности выбранного варианта для данной технологической задачи. При значительном отклонении расчетной поверхности от выбранной следует перейти к другому варианту конструкции и вновь выполнить уточненный расчет. Число повторных расчетов зависит главным образом от степени отклонения ориентировочной оценки коэффициента теплопередачи от его уточненного значения. Многократное повторение однотипных расчетов предполагает использование ЭВМ. Следует, однако, иметь в виду, что трудоемкость повторных расчетов вручную резко снижается по мере выявления характера зависимости коэффициентов теплоотдачи от параметров конструкции аппарата. [c.21]

    Необходимыми условиями для надежной работы котельного и печного агрегатов являются устойчивость факелов горелок и соответствие их теплообменных параметров оптимальным условиям теплообмена в топочном устройстве. Именно эти условия невозможно удовлетворить при сжигании жидких нефтесодержащих отходов или обводненных мазутов, имеющих неравномерное (гнездовое) распределение воды в относительно большом объеме горючей массы. Любое колебание влажности отдельных порций отходов, подаваемых в топку, влечет за собой соответствующее одновременное изменение действительного расхода горючей массы и коэффициента избытка воздуха, что неизбежно нарушает работу топки из-за резкого ухудшения условий стабилизации топочного процесса, вплоть до полного срыва горения. При последующем пуске возможны хлопки. [c.93]


    МАССО- И ТЕПЛООБМЕН ПРИ ПЕРЕМЕННЫХ ЗНАЧЕНИЯХ ПАРАМЕТРОВ И ДЛЯ ПОЛИДИСПЕРСНЫХ СИСТЕМ [c.242]

    Данное пособие составлено по следующей схеме. Первая часть посвящена общим принципам расчета гидравлических, тепловых и массообменных процессов, а также механическим расчетам аппаратов. Приведенные здесь уравнения, справочные данные и рекомендации помогут рассчитать гидравлическое сопротивление систем, подобрать для них соответствующие насосы, вентиляторы или газодувки рассчитать теплообменные аппараты и выбрать оптимальный для данного случая вариант теплообменника определить основные параметры, необходимые для расчета массообменных аппаратов рассчитать аппараты на прочность. [c.6]

    Параметры теплоносителей трехсекционного медного теплообменного аппарата (рис. 3-19) [c.122]

    Применение вычислительных машин сокращает продолжительность расчетов и позволяет решать задачи по оптимизации параметров проектирования. Стоимость теплообменных аппаратов зависит от многих факторов величины поверхности теплообмена, применяемых материалов, конструкций, рабочей температуры, давления и т. д. Так, при повышении давления с 6 до 43 ат стоимость аппарата возрастает на 60%, а с повышением температуры с 300 до 480" С — в 2 раза. Наибольшую стоимость при данной поверхности теплообмена имеют теплообменники с плавающей головкой, наименьшую — с жесткими трубными решетками. [c.269]

    Выход продукта можно увеличить, повысив температуру хладоагента и улучшив теплообмен путем уменьшения диаметра труб реактора, а также, увеличением массовой скорости потока. Бик рассматривает пример такой модификации диаметр трубы был уменьшен до 1,27 см, массовая скорость потока увеличивалась вдвое. Гидравлическое сопротивление в этих условиях увеличивается в четыре раза, это еще допустимо. Модифицированный реактор имел следующие параметры диаметр трубы 1,27 см, массовая скорость G = моль см -сек)-. Re = 332 Ре =10,0 Nu = 32,7 k = 2,02-10 2 кал см -сек-град)-, Яэф = 4,41 10" кал ] см-сек,град)-, W = 2,М. [c.203]

    При проектировании новых производств и реконструкции действующих следует отдавать предпочтение стандартизованной теплообменной аппаратуре применение нетиповых аппаратов допускается только в технически обоснованных случаях.Стандартами (ГОСТ 12067—79 ГОСТ 14245—79 ГОСТ 14246—79 ГОСТ 15122—79 ГОСТ 20764—79) ограничены типы, параметры и основные размеры теплообменных аппаратов общего назначения, изготовляемых из черных, цветных металлов и их сплавов и рассчитанных на условное давление до 6,4 МПа и максимальную рабочую температуру до 350 °С. [c.145]

    Основной недостаток рассматриваемых моделей (не затрагивая искусственных приемов и математических погрешностей ),. состоит в игнорировании влияния на теплообмен теплофизических свойств твердого материала (в частности, его теплоемкости). Последующее включение параметров, характеризующих эти свойства, в эмпирические формулы пе достигает цели самые удачные из этих формул (например. Лева ) расходятся с опытными данными в 4—5 и более раз. [c.419]

    ОСНОВНЫЕ КОНСТРУКЦИИ и ПАРАМЕТРЫ НОРМАЛИЗОВАННЫХ ТЕПЛООБМЕННЫХ АППАРАТОВ [c.23]

    Трубная решетка, нет внутренней крышки), однако могут быть лишь двухходовыми из труб только одного сортамента 20 х 2 мм. Поверхности теплообмена и основные параметры этих теплообменни- [c.25]

    В зависимости от цели оптимизации в качестве критерия оптимальности могут быть приняты различные параметры габариты, масса аппарата, удельные энергетические затраты и т. п. Однако наиболее полным и надежным критерием оптимальности (КО) при выборе теплообменного аппарата принято считать [13, 14] универсальный технико-экономический показатель сумму капитальных и эксплуатационных затрат, отнесенную к одному году нормативного срока окупаемости, или так называемые приведенные затраты П  [c.39]

    Другим важным параметром при расчете на прочность узлов и деталей является их температура. При температуре среды в аппарате ниже 250 С расчетная температура стенки и деталей принимается равной максимально возможной при эксплуатации температуре среды. В случае обогрева открытым пламенем или горячими газами при температуре выше 250 °С расчетную температуру стенки и внутренних деталей принимают равной температуре среды, увеличенной на 50 °С. Для аппаратов с изоляцией температуру стенки принимают равной температуре на границе с изоляционным слоем (определенной теплотехническим расчетом), увеличенной на 20 °С. Для аппаратов, в которых осуществляется теплообмен, средняя расчетная температура стенок, труб, пластин и других деталей определяется теплотехническим расчетом. [c.76]

    Проточные реакторы. Большинство современных промышленных процессов проводится в непрерывно действующих проточных реакторах. Такой реактор представляет собой открытую систему, взаимодействующую с внешней средой в аппарат непрерывно подаются исходные вещества и отводятся продукты реакции и выделяющееся тепло. На показатели работы реактора влияют, наряду с химической кинетикой и макрокинетикой процесса, новые, специфические факторы конвективный поток реагентов и теплообмен с внешней средой. Расчет и теоретический анализ работы реактора с учетом взаимодействия и взаимного влияния всех этих факторов — далеко не простое дело. Число параметров и переменных, необходимых для точного расчета, в практически важных случаях может быть чрезвычайно большим и превосходить возможности даже самых быстродействующих вычислительных машин. Дополнительную сложность вносят типичные для крупномасштабных систем явления статистической неупорядоченности и случайного разброса характеристик процесса. Эти явления нельзя рассматривать как внешнюю, досадную помеху они связаны с самой природой процесса и должны обязательно приниматься во внимание при анализе его работы. Непременным залогом успеха при расчете промышленных химических реакторов является предварительный анализ основных факторов, влияющих на процесс в данных условиях. Только таким путем можно выделить основные связи из сложной и запутанной картины взаимодействия различных процессов переноса и химической реакции, не отягощая расчет излишними и зачастую обманчивыми уточнениями и в то же время не упуская из виду существенных, хотя, может быть, и трудных для анализа, действующих факторов. [c.203]


    Невозможно рекомендовать тип вставки, оптимальной для всех практических случаев, поскольку каждый процесс, использующий технику псевдоожижения, в разной стенени зависит от отдельных параметров процесса. Вставка, полезная для одного процесса, может оказаться непригодной для другого. Сепарации частиц обычно стремятся избегать это, конечно, не относится к процессам классификации в псевдоожиженном слое, когда вставки, способствующие сепарации (горизонтальные сетки, неподвижная.насадка), безусловно, полезны. С другой стороны, если главным фактором является теплообмен, следует серьезно анализировать возможность использования вертикальных труб или стержней. [c.542]

    На основании этих же данных были определены геометрические параметры проектируемого теплообменного аппарата. При этом длину и ширину пластин принимаем исходя из постоянства геометрических параметров теплообменника  [c.59]

    Зная эти параметры и поверхность теплообмена, рассчитаем количество пластин в теплообменном аппарате  [c.59]

    В результате такой замены возможно ужесточение режима ведения процесса платформинга, поэтому необходимо применение современных средств автоматизации и контроля параметров. В настоящее время, к сожалению, еще достаточно многие нефтеперерабатывающие заводы используют на установках пневматические приборы, но преимущества электрических приборов над пневматическими неоспоримы. Поэтому в данном разделе рассматривается замена пневматических приборов. Ниже приводятся функциональные схемы автоматизации одного из четырех реакторов и нового теплообменного аппарата со спецификациями. [c.95]

    Таким образом, зависимости С=/(т) и м = /(т) имеют важное значение для анализа процесса сушки. Они могут быть получены расчетным или опытным путем. Опытное их определение сравнительно несложно при постоянных параметрах сушильного агента (/, Х=соп51), однако в реал ьных аппаратах Х—маг, причем закон изменения / и X по длине аппарата определяется совокупностью гидродинамических, массо- и теплообменных параметров процесса. Это в значительной степени затрудняет снятие кривых кинетики в условиях, соответствующих работе реального аппарата кроме того, полученные зависимости носят частный характер, т. е. справедливы только для тех условий, в которых был проведен опыт, и плохо поддаются экстраполяции на другие условия или размеры аппарата. [c.23]

    Одним из современных требований является необходимость организации для каждого типа топочного устройства такого метода сжигания, у которого габаритные и теплообменные параметры факела наилучшим образом соответствуют относительному расположению экранных поверхностей нагрева или размерам и конфигурации топки. При разработке методов сжигания газа и мазута в котлах малой и средней мощности чаще приходится сталкиваться с необходимостью укорочения длины факела во избежание локального перегрева экранных труб и са-жеобразования. [c.6]

    В зависимости от степени компактности конструкции и целей исследования допустимой точности аппроксимации рассматривают модвли теплообменных аппаратов как с сосредоточенными, так и с распределенными параметрами. [c.53]

    Температура Тя зависит от параметров испаряющейся жидкости (фракционного состава, температуры кипения, давления насыщенных паров) и давлення и температуры окружающей среды, но мало зависит от относительной скорости движения и диаметра капли. Для определения Тя могут быть использованы соответствующие зависимости, предлагаемые в работах [126, 133]. При высвкнх температурах окружающей среды (например, в дизелях и ВРД) можно принимать Тя равной температуре кипения Т,. Прн определении Тя в условиях поршневых ДВС тепло лучеиспускания обычно ие учитывается, его доля составляет менее 1,5% [126]. Следует отметить, что при Гв<Г, испарение близко к изотермическому и лимитируется диффузней паров при Тя>Т, испарение лимитируется теплообменом. В процессе испарения капли ее диаметр постоянно уменьшается, однако, по данным [134], если рт>С< (где С. — концентрация паров у поверхности капли), испарение можно считать квазистационарным и можно рассчитывать его скорость по формулам, приведенным в работе [135] [c.109]

    Для определения коэффициента теплообмена использовались результаты работ [379, 381, 382] по теплообмену единичной капли. В упомянутых работах [378 -382] не приведены геометрические и режимные параметры рассчитьшаемого аппарата, отсутствуют данные о начальных и граничных условиях, нет результатов расчетов гидродинамики факела. Авторы указывают, что модель дает удовлетворительное совпадение с экспериментом, однако данные по сопоставлению авторы не приводят. [c.252]

    Барботажная колонна (рис. 9.9) представляет собой вертикальный цилиндрический сосуд 1 с размещенным внизу газораспре-делителем-барботером 3. Теплообменными устройствами служат стенки сосуда, заключенные в рубашку 2, горизонтальные змеевики или пучки вертикальных труб 4. Основным параметром бар- [c.266]

    Химическое оборудование весьма разнообразно по конструкции, однако за последнее время на основе изучения условий работы аппаратов и машин, предназначенных для однотипных процессов, проведена большая работа по их унификации и стандартизации. Так, например, стандартизированы теплообменная аппаратура, горизонтальные резервуары, центрифуги, многие типы сушилок и другие машины и аппараты. Значительная часть химических машин и аппаратов в связи со специфическими условиями работы являются нестандартными, однако их изготовляют из сравнительно небольшого числа одн ипных узлов и деталей (днищ, фланцев и др.). Это дает возможность конструировать аппараты из стандартных и нормализованных элементов. Нормализуют детали химических аппаратов, отбирая наиболее удачные конструкции, применяемые в промышленности, и проводя научно-исследоватеЛьские и расчетно-конструкторские работы, позволяющие определить рациональные параметры аппаратов и их отдельных узлов. ГОСТы и нормали на отдельные узлы и детали аппаратов рассмотрены ниже, в параграфах, где описаны соответствующие элементы, [c.31]

    Конструкторский расчет производят при проектировании теплообменного аппарата, когда известны или заданы расходы теплоносителей и их параметры на входе и выходе из теплообмвн.ного аппарата. Целью конструкторского расчета является определение величины поверхности теплообмена выбранного типа теплообменного аппарата. [c.8]

    Теплообменные аппараты с различной поверзоностью теплообмена получают путем последовательного или параллельного соединения нормализованных элементов в секции. Промышленность выпускает элементы ТТ38 и ТТ76. Основные. параметры этих элементов приведены в табл. 3-23. [c.109]

    Греющие элементы выполняются в виде рещиферов с выемдой тру чаткой или в виде змееаиков и греющих рубашек. Вид теплообменной поверхности зависит от ее расчетных размеров, рабочих параметров тепло- носителя и химических свойств среды. [c.104]

    При том же, что и в предыдущем случае, качественном составе параметров была сформулирована задача оптимизации работы полученного агрегата с учетом факторов неопределенности информации. Всего было выделено 11 точечных и 19 неопределенных параметров. Под точечными понимаются такие параметры, которые полностью соответствуют детерминированным оптимизирующим переменным традиционной оптимизации. В качестве примера таких параметров можно привестп объемы загрузок контактной массы, площади поверхности теплообменной аппаратуры и др. В результате решения поставленной задачи для четырехслойной системы производства серной кислоты из серы под давлением были получены оптимальные значения параметров технологических потоков ХТС (расходы, температуры, давления, [c.277]

    Идентификация математических моделей проводилась по данным промышленного эксперимента. Для получения и статической обработки массивов информации был использован специально разработанный комплекс алгоритмов и программ автоматизированного промышленного эксперимента APEX . В результате идентификации определены оценки параметров уравнений кинетики в моделях реакторов, а также неизвестные константы в моделях теплообменных аппаратов. Показано, что характер изменения /сдн достаточно хорошо описывается линейным уравнением Адн (т) = кцо + Kl o (т). [c.335]

    Разборные теплообменники изготовляют по ГОСТ 15518—78 в трех исполнениях I — на консольной раме, II — на двухопорной раме, III — на трехопорной раме. Теплообменник в исполнении II показан на рис. 11.12. В табл. II.13 и 11.14 даны поверхности теплообмена и основные параметры разборных пластинчатых теплообменн-иков. Подробные сведения о полуразборных и сварных теплообменниках приведены в литературе 18]. [c.30]

    Оптимизация даже части внутренних параметров основе критерия максимума эффективности теплообмена уменьшает соответственно число независимых переменны и значительно облегчает технико-экономическую оптими зацию других параметров. Также в отличие от предыду щнх работ по методике оптимизации теплообменных аппа ратов, эффективность теплообмена рассматривается 1 книге для двухстороннего обтекания в первую очередь дл однофазных теплоносителей, при этом вместо применяв шихся графоаналитических метддов оптимизации разра ботана аналитическая методика сравнения и оптимизаци различных вариантов поверхностей с применением ЭВМ [c.4]

    Полученные ранее критерии tie, щ, могут быть использованы при сравнении различных теплоносителей. С этой задачей встречаются при выборе теплоносителя для охлаждения атомных реакторов, для различных теплообменных аппаратов, а также при выборе рабочих тел для замкнутых циклов, например ЗГТУ. Обычный путь решения этой задачи — сравнение результатов расчета вариантов, полученных при использовании различных теплоносителей. Однако результаты такого сравнения существенно зависят от принятых тепловых схем, условий сопоставления и рассматриваемых консттрукций. Поэтому прежде чем сравнивать показатели вариантов с различными теплоносителями, целесообразно предварительно провести сопоставление свойств непосредственно самих теплоносителей для оценки перспективы их возможностей и достижимых показателей при различных параметрах. Основой такого сопоставления может служить разработанная выше методика сравнения поверхностей при условии постоянства конфигурации каналов и их пространственного расположения в решетке, что приводит к условию 112= 1- К роме того, смена теплоносителя в аппарате не влияет на коэффициент gx, т. е. gx2/gxi = l (здесь индекс 1 означает заданный, а 2 — исследуемый теплоноситель. Отсюда следует, что результаты сравнения для Q, F, N w Q, X, N характеристик аппарата будут одними и теми же. Это упрощает общее решение задачи. [c.102]


Смотреть страницы где упоминается термин Теплообмен параметры: [c.100]    [c.100]    [c.163]    [c.120]    [c.97]    [c.101]    [c.83]    [c.426]    [c.330]    [c.391]    [c.126]   
Промышленное псевдоожижение (1976) -- [ c.237 ]




ПОИСК







© 2025 chem21.info Реклама на сайте