Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Скорости цепных

    С целью упрощения решения задачи были предложены различные приближенные способы вычисления скорости цепного процесса. [c.25]

    М. Боденштейном был предложен метод приближенного определения скорости цепного процесса, получивший название метода стационарных концентраций. Если в цепном процессе достаточно быстро устанавливается такое состояние, когда скорости образования и гибели промежуточного продукта равны, то его концентрацию можно считать постоянной (стационарной)  [c.25]


    Надежная количественная оценка скорости цепного окисления углеводородов затруднительна. Чтобы воспользоваться известными способами оценки скорости цепного окисления, необходимо детально изучить механизм цепного процесса и прежде всего механизм его наиболее медленных стадий — возбуждения молекул и зарождения цепей. [c.26]

    Такой вывод был сделан на основании исследований механизма зарождения цепей в окисляющихся жидких углеводородах косвенными методами — по начальной скорости цепного окисления и методом ингибиторов, что не всегда позволяет однозначно определить действительный механизм процесса [17]. [c.30]

    Соответственно изменению п с температурой будет изменяться и энергия активации реакции (О ). Таким образом, при жидкофазном окислении углеводородов в условиях, когда зарождение цепей происходит преимущественно по гомогенному механизму, может существовать такая температура, при которой скорость реакции образования свободных радикалов будет наибольшей. Соответственно при небольших временных превращениях, когда в целом скорость цепного процесса определяется скоростью наиболее медленной стадии — зарождения цепей, скорость окисления также будет характеризоваться экстремальной температурной зависимостью. [c.37]

    В первом случае при составлении кинетического уравнения используется принцип стационарного состояния при допущении, что концентрация активных частиц постоянна и значительно ниже концентраций исходных веществ и продуктов реакции. Тогда скорость цепной реакции уменьшается лишь вследствие понижения концентраций реагентов. Приняв для каждого вида активных частиц условие, что скорость изменения их концентрации во времени [c.232]

    Приведенные выше рассуждения относятся к случаю, когда скорость цепной реакции постоянна или уменьшается только в [c.233]

    Внезапный рост скорости цепной реакции в определенных диапазонах давления в системе. [c.234]

    Зависимость скорости цепных реакций в газовой фазе (особенно при низком давлении) от формы реакционного сосуда. Уменьшение скорости в сосудах с неболь шими размерами. [c.234]

    Возрастание скорости цепной реакции вследствие введения в систему посторонних газов при низких давлениях, понижение скорости при высоких давлениях. [c.234]


    Скорость цепной реакции пропорциональна концентрациям носителя цепи, и на нее прямо влияют скорости образования и разрушения этих носителей. Теоретически цепная реакция может быть ускорена без повышения температуры. Если одна из ступеней реакции дает более одного носителя, цепь разветвляется и скорость реакции обычно возрастает иногда до взрывной. Этого может и не произойти по ряду причин, одной из которых может явиться взаимодействие радикалов со стенкой сосуда, в результате которого происходит потеря энергии. [c.474]

    Несмотря на то, что процесс образования свободного атома или радикала требует большой затраты энергии, легкость взаимодействия свободных радикалов с насыщенными молекулами и регенерация прн этом новых свободных радикалов приводит к тому, что скорость цепного процесса может оказаться больше скорости нецепного процесса. Этим можно объяснить большую распространенность цепных химических реакций. [c.195]

    Хотя механизм этой реакции изучен недостаточно детально, опыт показывает, что реакция протекает как цепная. Несмотря на очень медленное зарождение цепи, скорость цепной реакции оказывается во много раз больше, чем скорость простой реакции. [c.200]

    Регулирующие стержни - замедлители ядерной реакции - сделаны из материала, хорошо поглощающего нейтроны, например кадмия. Напомним, что именно число нейтронов нарастает в цепной реакции. Поглощение нейтронов нерасщепляемым материалом уменьшает ту их часть, которая вызывает дальнейшее деление. Скорость цепной реакции регулируется подниманием или опусканием этих стержней между топливными (рис. V.23). [c.343]

    Как влияют на скорость цепных реакций посторонние нримеси  [c.396]

    Как влияет па скорость цепных реакций объем сосуда  [c.396]

    Скорость цепного окисления индивидуального углеводорода или смеси углеводородов при достаточно высокой [О2] (больше 10 моль/л) описывается простым выражением [c.55]

    Поскольку скорость цепного окисления прямо пропорциональна длине цепи, F равен отношению длины цепи в отсутствие ингибитора к длине цепи при окислении с ингибитором [c.133]

    Скорость цепной неразветвленной реакции для линейного обрыва цепей будет [c.388]

    Температу] ная зависимость скорости цепных реакций [c.213]

    Общая скорость цепной реакции определяется скоростью образования H I  [c.606]

    Имеющиеся экспериментальные данные [46] по определению порядка реакции довольно противоречивы и неточны. Во всех. работах найдено уменьшение констант скоростей первого порядка с уменьшением давления этана. Константы, рассчитанные исходя из начального давления, меняются. Заксе [47], например, нашел, что константы скоростей нервого порядка увеличиваются примерно на 50% при увеличении начального давления этана от 30 до 100 мм рт. ст. в области температур от 850 до 910° К. Попытка Динт-сеса и Фроста [48] проанализировать скорость в пределах одного опыта привела к следующей математической зависимости kt = Ig (1—х) -f Вх, где В — константа. Таким образом, имеющиеся экспериментальные данные по определению порядка реакции не дают существенного вклада в выяснение механизма. Для доказательства механизма с большей надежностью могут быть использованы данные по распределению продуктов и значения абсолютных скоростей реакций. Тот факт, что СН4 не является основным продуктом в начальных стадиях реакции (составляя 2—10% от количества Hg), указывает, что скорости образования СН4 в начале реакции [см. уравнение (XIII.10.5)1 должны составлять меньше 10% от скорости цепной реакции, дающей Нг- Отношение скоростей образования Hj и СН4, а именно (Hg/ Hi), может быть рассчитано исходя из упрощенной схемы [см. уравнение (XIII.10.5)] и приводит к уравнению [c.311]

    Эти значения основываются па экспериментальных и термодинамических данных для абсолютной скорости рекомбинации радикалов СН3, термодинамических данных для С2И6, СЩ и т. д., энергии связи в метане (СН3— Н) и предполагаемом значении энтропии для СН3. Очень сомнительно, что все эти данные при 900° К дадут 10—20-кратную ошибку в величине А (.(Отметим, что для этого необходимо, чтобы ошибка в определении ДЯ равнялась 4—5 ккал и ошибка в равнялась 4—5 кал/моль-град.) В действительности наблюдается, что скорость цепной реакции измепяется пропорционально [c.313]

    И, таким образом, скорость цепной реакции уменьшается в Р раз. Данные табл. XIII. 10 показывают, что Р = 1,15 при давлении СаНд = 1 атм и 2,5 при давлении СгНд = 0,01 атм. Множитель Р довольно слабо увеличивается с температурой, становясь при 1 атм равным примерно 1,05 для 850° К и 1,5 для 950° К. Это приводит к некоторому уменьшению порядка цепной реакции относительно концентрации С2Н0 и уменьшению энергии активации суммарной реакции. [c.318]

    Таким образом, как только при этих давлениях в системе образуется кетон, концентрация радикалов СН3 начинает резко уменьшаться вследствие образования СНдСОСНз и скорость цепной реакции СН3 + ацетон -> — СН4 + СНа СОСНз должна замедляться . Этим фотолиз ацетона резка [c.329]


    Тес ретическое определение скорости цепного процесса сопряжено с известными трудностями. В цепном процессе элементарные реакции каждого звена цепи взаимосвязаны. Для определения скорости цепного процесса необходимо установить пространственно-временную связь между всеми элементарными реакциями, участвующими в процессе. В общем случае подобный подход приводит к системе труднорешаемых сложных дифференциальных уравнений, описывающих скорость изменения концентрации каждого продукта при цепном процессе. [c.25]

    Кадмий сильно поглощает медленные нейтроны. Поэтому кадмиевые стержни применяют в ядерных реакторах для регулирования скорости цепной реакции. Кадмий используется в щелочн(.1х аккумуляторах (см. 244), входит как компонент в некоторые сплавы. Например, сплавы меди, содержащие около 1% d (кау(,-миевая бронза), служат для изготовления телеграфных, телефонных, троллейбусных проводов, так как этн сплавы обладают большей прочностью и износостойкостью, чем медь. Ряд легкоплавких сплавов, например, применяющиеся в автоматических огнетушителях, содержат кадмий. Несмотря на сравнительно высокую стоимость, кадмий применяется для кадмирования стальных изделий, так как он несет на своей поверхности оксидную пленку, обладающую защитным действием. В морской воде и в некоторых других условиях кадмирование более эффективно, чем цинкование. [c.625]

    Научивщись регулировать скорость цепной реакции, ученые сделали возможным использование выделяемой теплоты для производства электроэнергии. [c.340]

    Параметр kp 2kt позволяет 1) рассчитать скорость цепного окисления V (при известных и и [КН]) 2) сравнить углеводороды по их склонности к окислению 3) рассчитать у по экспериментальному значению V у,= и2/[КН] (АрУ2й ) 4) оценить условия, при которых реакция окисления протекает по цепному механизму. Длина цепи [c.33]

    К.] - / 7 н у = кр [Оз] [К.] = кр /У [Оа] ViУ2 т. е. скорость цепного окисления не зависит от [КН], прямо пропорциональна [Ог] и по-прежнему Такой режим, [c.35]

    Параметр Ь характеризует автокаталитическую кинетику окисления углеводорода, когда оно протекает цепным путем, а главным источником радикалов является образующийся гидропероксид. Этот параметр является комплексным, так как включает и параметр а, характеризующий скорость цепного окисления при yi= onst (см. с. 42) и й,-rooh — эффективную константу скорости автоинициирования. [c.61]

    Подставляя сюда вместо КОг- выражение vjkp [КН] и принимая во внимание, что при [1пН] =0 у = Уо= р [RH] получаем следующую зависимость скорости цепного окисления i (v> 1) от [1пН] и о,  [c.105]

    Существование резкого перехода от быстрого протекания окисления к очень медленному и соответственно критической концентрации ингибитора связано с рядом условий. Во-первых, практически все цепи должны обрываться на молекулах ингибитора прн изменении его концентрации в достаточно широком интервале. Во-вторых, обрыв цепей на ингибиторе должен быть линейным, а скорость цепного окисления — обратно пропорциональна концентрации ингибитора. Как отмечалось выше, это наблюдается, если радикалы ингибитора не принимают участия в продолжении цепи по реакциям с гидропероксидом и углеводородом, т. е. при этом должно выполняться неравенство (1пн+коон1-ЬИ(1п-нкн)<У . В-третьих, в периоде индукции ингибитор должен израсходоваться главным образом за счет радикалов, генерируемых гидропероксидом, т. е. должно выполняться [c.114]

    Если ингибитора введено достаточно много, так, что fe iскорость цепного окисления в стационарном режиме равна [c.132]

    Кроме того, на разных стадиях цепных процессов протекают реакции, в которых сказываются особенности жидкофазных процессов, а следовательно, изменение физических свойств среды в ходе превращений. Так, при достаточно вязкой жидкости скорость квадратичного обрыва будет описываться уравнением (2.35) и определяться скоростью дпффузгп радикалов из клетки , в свою очередь определяемой вязкостью среды. Следует напомнить, что вязкость среды при окислении углеводородов может меняться на порядок и выше, а прп цепных процессах полимеризации — на многие порядки. Далее, скорость мономолекулярного распада таких реакционноспособных соединений, как иерекисп, озониды пли некоторые инициаторы полимеризации, зависит от времени между соударениями данного вида молекул. Это следует из теории моно-молекулярных реак ций Слеттера [25], согласно которой потенциальная и кинетическая энергии молекулы зависят от времени соударения с другими молекулами. Поскольку частоты столкновения молекул в клетке больше, чем вне ее, и зависят от вязкости среды, следует ожидать, что скорость распада инициаторов цепи, а следовательно, к скорость цепного процесса в целом также зависят от вязкости среды и меняются по ходу превращения. [c.44]

    Обобщим этот пример. Пусть за счет внешнего источника энергии (свет, электроразряд, нагревание, а-, р- иЛи -излученне, электронный удар) образуются свободные радикалы или атомы, обладающие ненасыщенными валентностями. Они взаимодействуют с исходными молекулами, причем в каждом звене цепи вновь образуется новая активная частица. Путем попеременного повторения одних и тех же элементарных процессов происходит распространение реакционной цепи. Ее длина может быть очень большой (в рассматриваемом примере па каждый поглощенный квант образуется до 100 ООО молекул НС1). Столкновение двух одинаковых радикалов при условии, что выделяющаяся при этом энергия может быть отдана третьему телу, приводит к обрыву цепи. Причиной обрыва может служить не только рекомбинация свободных радикалов (XII), но и их захват стенкой реакционного сосуда, взаимодействие радикала с примесями (если они не служат источником свободных радикалов), а также образование малоактивного радикала (обрыв в объеме). Вот почему скорость цепной реакции очень чувствительна к наличию посторонних частиц и к форме сосуда. Так, содержание Б хлороводородной смеси долей процента кислорода в сотни раз уменьшает длину цепей, а поэтому и скорость синтеза гтом Н, легко реагируя с О2, образует малоактивный радикал НО2, не способный вступать в реакцию [c.127]

    Из уравнения (ХХУ.20) видно прогрессивное нарастание концентрации свободных радикалов, а следовательно, и скорости цепной реакции. Через каждые 1/ф с концентрация свободных радикалов, а следовательно, ь скорость цепной реакции возрастает в е раз и за время нескольких интервалов 1/ф практически полное отсутствие реакции сменяется взрывным протеканием процессов. Для разветвленных цепных реакций характерно наличие двух резко различающихся режимов протекания процесса. Если скорость обрыва больше скорости разветвления цепей, то обеспечивается стационарный режим процесса, причем скорость процесса неизмеримо мала. Если скорость обрыва меньше скорости разветвления, то развивается нестационарный автоускоряющий-ся процесс, заканчивающийся цепным воспламенением смеси. Переход от условия / к условию / > <7 может произойти при незначительном изменении одно] о из параметров, определяющих скорости обрыва или разветвления цепей давления, температуры, состава смеси, размера реакционного сосуда, состояния стенок сосуда. Таким образом, незначительное изменение одного из параметров может вызвать переход эт неизмеримо медленной стационарной реакции к быстрому взрывному процессу или наоборот. Такие явления в химической кинетике назьЕваются предельными или критическими явлениями. Значение парг1метра, при котором происходит переход от одного режима к другому, называется пределом воспламенения. [c.390]


Смотреть страницы где упоминается термин Скорости цепных: [c.201]    [c.293]    [c.332]    [c.234]    [c.353]    [c.32]    [c.60]    [c.111]    [c.114]    [c.133]    [c.228]    [c.388]    [c.389]   
Катализ и ингибирование химических реакций (1966) -- [ c.357 ]




ПОИСК







© 2025 chem21.info Реклама на сайте