Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Ядро атома модель

    Ядерная модель атома. Одна из первых моделей строения атома была предложена английским физиком Э. Резерфордом. В опытах по рассеянию а-частиц было показано, что почти вся масса атома сосредоточена в очень малом объеме — положительно заряженном ядре. Согласно модели Резерфорда, вокруг ядра на относительно большом расстоянии непрерывно движутся электроны, причем их количество таково, что в целом атом электрически нейтрален. Позднее наличие в атоме тяжелого ядра, окруженного электронами, было подтверждено другими учеными. [c.10]


    Атом давно перестал быть неделимым. После открытия естественной радиоактивности, катодных лучей и электронов были предложены первые модели строения атомов. Согласно модели первооткрывателя электрона Томсона (1904) атом представляет собой сферу положительного электричества одинаковой плотности пО всему объему диаметром порядка 0,1 нм. Электроны как бы плавают в этой сфере, нейтрализуя положительный заряд. Колебательное движение электронов возбуждает в пространстве электромагнитные волны. Экспериментальную проверку этих наглядных представлений предпринял английский физик Эрнест Резерфорд в-своих знаменитых опытах по рассеянию а-частиц (ядра атома гелия). Схема установки Резерфорда (1907) приведена на рис. 8. Радиоактивный препарат Р излучает а-частицы ( снаряды ) в виде узкого пучка, на пути движения которого ставится тонкая золотая фольга Ф. Регистрация а-частиц, прошедших через фольгу, производится микроскопом М на люминесцирующем экране Э по вспышке световых точек сцинтилляция). Если модель атома Томсона верна, а-частицы не могут пройти даже через очень тонкую фоль- [c.31]

    При развитии модели строения атома водорода Бору необходимо было преодолеть прежде всего внутренние противоречия, которые имели место в планетарной модели атома. По представлениям классической электродинамики вращающийся электрон должен непрерывно излучать энергию в виде электромагнитных волн. Отсюда следует, что электрон должен упасть на ядро, а также при непрерывном излучении спектр водорода должен быть сплошным, т. е. содержать линии, отвечающие всевозможным длинам волн. Однако, как известно, атом водорода устойчив и спектр его имеет дискретную структуру (рис. 3.5). Отсюда можно было заключить, что механические и электрические свойства макроскопических тел не могут служить моделью для такой микросистемы, как атом водорода (а также вообще микросистем). Бор вынужден был искать новую модель, которая не противоречила бы известным фактам. [c.53]

    Однако к моменту открытия периодического закона только лишь стали утверждаться представления о молекулах и атомах. Причем атом считался не только наименьшей, но и элементарной (т. е. неделимой) частицей. Прямым доказательством сложности строения атома было открытие самопроизвольного распада атомов некоторых элементов, названное радиоактивностью. В 1896 г. французский физик А. Беккерель обнаружил, что материалы, содержащие уран, засвечивают в темноте фотопластинку, ионизируют газы, вызывают свечение флюоресцирующих веществ. В дальнейшем выяснилось, что этой способностью обладает не только уран. Титанические усилия, связанные с переработкой огромных масс урановой смоляной руды, позволили П. Кюри и М. Склодовской открыть два новых радиоактивных элемента полоний и радий. Последовавшее за этим установление природы а-, (5- н у-лучей, образующихся при радиоактивном распаде (Э. Резерфорд, 1899 —1903 гг.), обнаружение ядер атомов диаметром 10 нм, занимающих незначительную долю объема атома (диаметр 10 нм) (Э. Резерфорд, 1909— 1911 гг.), определение заряда электрона (Р. М и л л и к е н, 1909— 1914 гг.) и доказательство дискретности его энергии в атоме (Дж. Ф р а н к, Г. Г е р ц, 1912 г.), установление заряда ядра, равного номеру элемента (Г. Мозли, 1913 г.), и, наконец, открытие протона (Э. Резерфорд, 1920 г.) и нейтрона (Дж. Чедвик, 1932 г.) позво или предложить следующую модель строения атома  [c.23]


    На рис. VI.12 изображена Рис. VI. 12. Смещение атомов в двух атом- МОДель ДВухатомнОЙ МОЛекуЛЫ ной молекуле относительно положения с равновесным расстоянием равновесия г между ядрами г . В нижней [c.224]

    Теория молекулярных орбит (Гунда — Малликена). В этой теории молекула рассматривается как система из п ядер, образующих определенную конфигурацию. В эту систему вносятся электроны, последовательно занимающие более низкие уровни, т. е. молекула рассматривается как атом с п ядрами . Такая модель позволила легко объяснить молекулу Иг и др. Задача построения молекулы сводится к нахождению наиболее энергетически выгодных для электронов молекулярных орбит. Теория предусматривает два типа орбит 1) энергетические уровни электронов, находящихся на орбитах, ниже, чем в изолированных атомах,— это связывающие электроны 2) энергетические уровни электронов, находящихся на орбитах, выше, чем в изолированных атомах,— это разрыхляющие орбиты, разрыхляющие электроны. [c.319]

    Выводы Резерфорда стали основой для создания им планетарной модели атома вокруг положительно заряженного ядра атома, н котором сосредоточена основная часть массы атома, вращаются электроны. Заряды ядра и электронов численно равны, поэтому атом электронейтрален. Подобную модель называют теперь ядерной. [c.49]

    Резерфорд предложил следующее строение атома с одной стороны, ядро, состоящее из протонов и нейтронов, в котором сконцентрированы масса и положительные заряды с другой стороны, электроны, вращающиеся в периферийной зоне, на значительном расстоянии от ядра. Центробежная сила противодействует силе притяжения электронов ядром. Таким образом, атом напоминает солнечную систему в миниатюре. Резерфорд оценил размеры ядра атома его диаметр равен приблизительно 10 см, тогда как диаметр атомов порядка 10 см. Итак, значительную часть объема атома составляет пустота. Этот фундаментальный опыт не только позволил обосновать модель атома, но и выявил исключительную роль атомного номера элементов. [c.16]

    Соображения, аналогичные вышеприведенным, были положены в основу ядерной модели атома, разработанной Резерфордом. Согласно этой модели, атом состоит из весьма малого по размерам положительно заряженного ядра, в котором сосредоточена практически вся масса атома. Размер ядра примерно в 100 000 раз меньше размера самого атома. В электрическом поле ядра движутся столь же малые по размерам, как и ядро, электроны. Так как атом в целом нейтрален, то суммарный заряд электронов должен быть равен заряду ядра. Эта модель атома сохранилась и в современных представлениях. [c.65]

    Конечно, тут открывается большой простор для фантазии теоретика (деформируй отдельные электронные облака атомов молекулы так, или почти так, как хочешь, благо математика это позволяет ). Можно сосредоточить (локализовать) электронную плотность частично на атомах (в виде электронных пар внутренних оболочек атомов или неподеленных электронных пар валентной оболочки), а частично на химических связях (локализация электронов в поле двух ядер отвечает двухцентровому взаимодействию атом — атом, которое описывается классической символикой валентного штриха), а можно пользоваться и делокализованными орбиталями, охватывающими в принципе все атомные ядра молекулы. Разумный теоретик стремится воспользоваться этой свободой для того, чтобы построить модель, приемлемую для химика и пригодную для описания данного класса свойств. [c.210]

    На основании обобщения ряда экспериментальных данных Резерфордом была предложена (1911) ядерная модель атома. В этой модели атом принимается состоящим из положительно заряженного ядра и электронов, вращающихся вокруг него по тем или иным орбитам. [c.27]

    Планетарная модель атома достаточно наглядно представляла строение атома. Пользуясь этой моделью, можно было объяснить некоторые свойства химических элементов, например способность одних атомов образовывать только положительно заряженные ионы, а других — только отрицательные. Однако планетарная модель атома находилась в противоречии с законами классической электродинамики, согласно которым вращающийся вокруг ядра электрон должен излучать энергию в виде электромагнитных волн. В соответствии с законом сохранения энергии излучение энергии электроном должно неизбежно сопровождаться уменьшением его скорости и электрон неминуемо должен упасть на ядро, в результате чего атом в виде планетарной системы должен перестать существовать. Иначе говоря, атомы должны излучать энергию в виде непрерывного, сплошного спектра и погибать как таковые. [c.45]

    ТО возникает следующая проблема. Когда заряженная частица движется с ускорением, она испускает или поглощает энергию. Если представить себе, что электроны движутся вокруг ядра, то на них действует центростремительная сила. Поэтому в соответствии с законами электромагнитной теории электроны должны излучать энергию. Единственным источником непрерывного пополнения энергии может быть только сам атом, и электрон, двигаясь по спирали, должен, в конце концов, упасть на ядро и, по сути дела, остановиться. Так как нет никаких доказательств того, что атомы исчезают, то необходимо сделать вывод, что модель Резерфорда не является абсолютно верной. [c.29]


    Согласно предложенной модели Резерфорда в центре атома находится очень малое по размерам положительно заряженное ядро, в котором практически сосредоточена вся масса, а вокруг него на значительном расстоянии вращаются электроны. Число электронов таково, что атом в целом электронейтрален. Электроны движутся вокруг ядра подобно планетам в поле притяжения Солнца. Атомное ядро мало по сравнению с размерами атома, как мало Солнце по сравнению с орбитами планет (отсюда название — планетарная модель). [c.34]

    Ядро занимает ничтожную часть атома. Если атом увеличить до размера футбольного поля, то ядро будет иметь величину булавочной головки. Э. Резерфорд предложил планетарную модель атома, в которой ядро играет роль Солнца, вокруг которого подобно планетам вращаются электроны. В отличие от планет все электроны совершенно одинаковы. Такое представление о строении атома в общем сохранилось и в современной физике, хотя оно и подверглось весьма значительному пересмотру и усовершенствованию. [c.145]

    Таким образом, спектрограмма излучения данного элемента представляет собой набор большого числа линий, каждая из которых соответствует глубине расположения электронов в атоме. Спектрограмма показывает, что электроны в атоме находятся на различных глубинах , т. е. на различных расстояниях от ядра. Существенно, что атомы каждого элемента имеют свои строго индивидуальные спектры, отличающиеся от спектров остальных элементов. На этом основан спектральный анализ. Расшифровка атомных спектров и привела к дальнейшему развитию планетарной модели атома, созданной великим датским физиком Н. Бором. Изучение спектров излучения и поглощения элементов показало, что электроны во всех атомах располагаются упорядоченно, т. е. определенными группами в нескольких слоях вокруг ядра. Чем дальше находится электрон от ядра, тем слабее он притягивается к атому. Поэтому такие внешние, или периферийные, электроны относительно легко удаляются от атома. Они могут переходить от атомов, которые их удерживают слабо, к атомам, сильнее притягивающим электроны. Подобные переходы и вообще изменения в состоянии внешних электронов и составляют сущность всех химических реакций. [c.147]

    Против этой модели выдвигалось следуюш,ее серьезное возражение. Согласно теории Максвелла, электроны, так как они электрически заряжены, не могут двигаться около ядра, не излучая энергии, вследствие чего они очень скоро должны были бы упасть на ядро. Таким образом, атом должен быть неустойчивым. [c.10]

    Основываясь на своих исследованиях, Резерфорд в 1911 г. предложил новую, планетарную модель, уподоблявшую атом солнечной системе. В центре должно было находиться очень маленькое положительно заряженное ядро, заключающее в себе почти всю массу атома, а вокруг ядра — располагаться электроны, число которых определяется значением положительного заряда ядра. Однако подобная система может быть устойчивой только в том случае, если электроны движутся, так как иначе они упали бы на ядро. Следовательно, электроны атома должны находиться приблизительно в таком же движении вокруг ядра, как планеты вокруг Солнца.  [c.69]

    Следует подчеркнуть, что периодическая система элементов Д. И. Менделеева явилась исходным пунктом для решения вопроса о строении атома и для создания его модели. Так, согласно ядерной модели наиболее просто устроен атом водорода ядро несет один элементарный положительный заряд, а в поле ядра по орбите движется один электрон. Порядковый номер железа 26. Значит, положительный заряд ядра равен 26, а в поле ядра нейтрального атома движется 26 электронов. У элемента курчатовия (2 = 104) положительный заряд ядра равен 104, а в поле ядра движется 104 электрона. Аналогично можно представить и строение атомов других элементов. [c.30]

    Резерфорд дал объяснения рассеяния а-частиц, предложив в 1911 г. ядерную модель строения атома. Согласно этой модели атом состоит из массивного положительно заряженного ядра, очень малого по размерам. В ядре сосредоточена почти вся масса атома. Вокруг ядра на значительном расстоянии от него вращаются электроны, образующие электронную оболочку атома. [c.40]

    Кем, когда и какими опытами было открыто ядро атома и создана ядерная модель атома Как построен атом согласно этой модели и равенство каких двух сил, действующих на электрон в атоме, выражает уравнение [c.76]

    Рис, 4. Рассеяние а-час- сеяния а-частиц предложил плане-тиц, приближающихся к тарную модель строения атома, атомному ядру Согласно этой модели, атом состо- [c.66]

    В 19П г. выдающийся английский физик Э. Резерфорд предложил планетарную модель атома, которая базировалась на законах классической механики, описывающей движение макрообъектов. Согласно этой модели атом состоит из положительно заряженного ядра и электронов, которые вращаются вокруг ядра по круговым орбитам, подобно вращению планет вокруг Солнца. В ядре атома сосредоточена почти вся масса атома. Число электронов в ато.ме численно равно заряду ядра, [c.34]

    Теория молекулярных орбит (Гунда — Малликена). В этой теории молекула рассматривается как система из п ядер, заранее образующих определенную конфигурацию. В эту систему вносятся электроны, последовательно занимающие более низкие уровни, т. е. молекула рассматривается как атом с п ядрами. Такая модель позволила легко объяснить молекулу Н.2 и др. Задача построения молекулы сводится к нахождению наиболее энергетически выгодных для электронов молекулярных орбит. Теория предуслшт- [c.270]

    Теория молекулярных орбит (Гунда-Мулликепа), в отличие от двух предыдущих, рассматривает молекулу как систему из и-ядер, заранее образующих определённую конфигурацию. В эту систему вносятся электроны, последовательно занимающие более низкие уровни, т. е. молекула рассматривается примерно как атом с и-ядрами. (Такая модель позволяет легко подойти к освещению молекулы П+ и т. и.) Задача построении молекулы сводится к нахождению наиболее энергетически выгодных для электронов молекулярных орбит . Теория предусматривает наличие двух энергетических типов орбит. Энергетические уровни электронов, находящиеся на орбитах 1-го типа, ниже, чем в изолированных атомах,—это связывающие орбиты (связывающие электроны). Энергетические уровни электронов, находящихся на орбитах 2-го типа, выше, чем в изолированных атомах, — это разрыхляющие орбиты, разрыхляющие электроны. [c.190]

    Достоверность модели Резерфорда была подтверждена дальнейшими исследованиями. Атомное ядро состоит из протонов и нейтронов (рис. 8-3). Вокруг ядра имеется ровно столько электронов, чтобы они компенсировали заряд ядра. Но классическая физика не в состоянии объяснить подобную модель атома. В самом деле, что удерживает положительные и отрицательные заряды на расстоянии друг от друга Если электроны неподвижны, электростатическое притяжение к ядру должно сближать их до получения миниатюрного варианта томсоновой модели атома. И наоборот, если электроны движутся по каким-то орбитам вокруг ядра, дело отнюдь не упрощается. Электрон, движущийся по кругу вокруг положительного ядра, представляет собой осциллирующий диполь, если рассматривать атом в плоскости такой орбиты при этом отрицательный заряд колеблется в одну и другую сторону относительно положительного заря- [c.332]

    При обсуждении э.пектронного строения многоэлектронного атома следует исходить из наличия у него ядра и соответствующего числа электронов, Будем предполагать, что допустимые электронные орбитали, если и не точно идентичны орбиталям атома водорода, то представляют собой нечто подобное им-так называемые водородоподобные орбитали. Тогда можно мысленно построить многоэлектронный атом, последовательно помещая на эти орбитали по одному электрону, причем процесс заселения следует начинать с наиболее низких по энергии орбиталей. Таким образом мы построим модель атома в его основном состоянии, т. е. в состоянии с низшей электронной энергией. Такой способ мысленного построения многоэлектронного атома впервые применил Вольфганг Паули (1900-1958), который назвал описанный процесс принципом заполнения. По существу, однако, процесс мысленного построения атома основывается на трех принципах. [c.386]

    В основе практически всех приближенных вариантов метода псевдопотенциала для молекул с несколькими валентными электронами лежит простая и естественная модель. Все электроны молекулы делятся на внутренние (остовные) и внеишие (валентные). Ядро каждого атома и относящиеся к нему внутренние электроны образуют атомный остов. Молекуле сопоставляют модель - взаимодействующие между собой валентные электроны движутся в поле атомных остовов. Чтобы этой моделью можно было пользоваться, для каждой конкретной молекулы надо задать оператор энергии взаимодействия валентного электрона с атомным остовом (т.е. псевдопотенциал атомного остова) и оператор энергии взаимодействия валентных электронов Между собой. Если сможем задать эти взаимодействия, то получим модель, обладающую несомненными достоинствами. В этой модели для однотипных молекул,, различающихся только атомами, стоящими в одном и тот же столбце системы Менделеева, оператор Гамильтона будет иметь одну и ту же структуру, и число электронов будет одним и тем же. Поэтому, например расчет молекулы, содержащей атом иода, будет не сложнее расчета такой же молекулы, но содержащей атом фтора хотя в первой из этих молекул на 44 электрона больще, чем во второй, все эти 44 электрона относятся к остову. Более того, поскольку модели таких молекул различаются только псевдопотенциалами атомных остовов, то изменение свойств при переходе от одной молекулы к другой можно связать с изменением характеристик псевдопотенциалов при переходе от одного атома к другому. В этом случае свойства молекул находят свое объяснение через свойства атомов, но не непосредственно, а через характеристики псевдопотенциалов атомных остовов. [c.292]

    Проблемы, существовавшие в то время в теории строения атома, не были проблемами, касающимися исключительно расположения электронов и ядра в атоме. Следовало еще выяснить, как атом может дать дискретный спектр, если этот спектр испускается атомом как таковым. Ни Томсон, ни Резерфорд не могли дать удовлетворительного ответа на этот вопрос. Важный вклад был сделан в 1907 г. Конвэем, который впервые попытался объяснить это явление в плане квантовых идей. Не используя никакой атомной модели, Конвэй сделал заключение о том, что атом испускает энергию, соответствующую спектральной линии, и что появление полного спектра объясняется очень большим числом атомов, в каждом из которых один электрон находится в возбужденном состоянии. [c.29]

    Так как атомы электронейтральны, то, следовательно, в них должны содержаться и какие-то частицы, заряженные положительно. При изучении внутреннего строения атомов очень важное значение имели опыты по рассеянию а-частиц при прохождении их в газе и через металлическую фольгу (а-частицы заряжены положительно). В камере Вильсона наблюдаются прямолинейные пути а-частиц в газе. Следовательно, а-частица проходит сквозь атомы. Однако она, хотя и редко, но резко отклоняется от прямолинейного пути, что указывает на столкновение ее с положительно заряженной частицей. Эти наблюдения привели к выводу, что атом состоит из положительно заряженного ядра весьма малого объема (г = = Ю- з см), в котором сосредоточена почти вся масса атома, и электронов, находящихся на значительном расстоянии от ядра. На основании обобщения экспериментальных данных, Резерфорд в 1911 г. предложил планетарную модель атома, согласно которой атом в целом дейтраден. а положительно заряженное ядро его окружено эле1 омм п ичем ч заряду ядра (порядковому [c.15]

    Однако вопрос о том, какие силы обеспечивают создание строгоупорядоченных органических молекул, иными словами, какова природа валентности, все еще оставался нерешенным. Подходы к решению этого вопроса открылись в связи с научной революцией, происшедшей на рубеже века в физике. В результате открытия радиоактивности, электрона, рентгеновских лучей атом предстал перед исследователями уже не прежним неизменяемым и неделимым шариком , а сложной динамической системой, в которой большую роль играют электрические силы. В 19П г. Э. Резерфорд выдвинул модель атома в виде тяжелого положительно заряженного ядра и движущихся вокруг него легких электронов. Через два года Н. Бор дал математическую обработку этой модели. [c.38]

    Как видно из табл. 26.2, для всех металлов, кроме лития, значения расчетных величин энергии кристаллической решетки близки к экспериментальным. Это свидетельствует о достаточной строгости выбранной модели ионной металлической решетки с электронным газом, который равномерно распределен по объему кристалла. Однако для металлов других групп периодической системы, кроме щелочных, расчет по формуле (26.9) приводит к величинам м. значительно превышающим экспериментальные (АЯсубл + 2 ). Из табл. 26.2 следует, что значения энергии кристаллической решетки для щелочно-зе-мельных металлов, вычисленные по ионной модели намного превосходят полученные экспериментально. Это означает, что у щелочно-земельных металлов в отличие от щелочных в ионном взаимодействии принимают участие не все валентные электроны. Чем выше положительный заряд ядра и чем меньше электронных слоев имеет атом, тем больше разница между фактической энергией кристаллической решетки и вычисленной по ионной модели. Очень большие расхождения и Ям свидетельствуют о непригодности ионной модели для этих элементов. [c.343]


Смотреть страницы где упоминается термин Ядро атома модель: [c.10]    [c.10]    [c.10]    [c.10]    [c.60]    [c.333]    [c.50]    [c.49]    [c.21]    [c.73]    [c.18]    [c.182]    [c.32]    [c.28]   
Химия справочное руководство (1975) -- [ c.0 ]




ПОИСК





Смотрите так же термины и статьи:

Модель атома

Модель ядром

Оболочечная модель ядра атома и устойчивость изотопов

Строение атомов. Периодический закон и система химических элементов Д. И. Менделеева Ядерная модель строения атома. Масса, размер, заряд ядра Изотопы и меченые атомы

Ядра атомов



© 2025 chem21.info Реклама на сайте