Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Двойной электрический слой теории

    Современная теория строения двойного электрического слоя основана на представлениях Штерна. Она объединяет две предыдущие теории. Согласно современной теории слой противо ионо состоит из двух частей (рис. П. 13). Одна часть находится в непосредственной близости к межфазной поверхности и образует слои Гельмгольца (адсорбционный слой) толщиной б не более диаметра гидратированных иоиов, его составляющих. Другая часть противоионов находится за слоем Гельмгольца, в диффузной части (диффузный слой Гуи с потенциалом ф ), толщина I которой может быть значительной и зависит от свойств и состава системы. Потенциал в диффузной части двойного электрического слоя не может зависеть линейно от расстояния, так как ионы в нем распределены неравномерно. В соответствии с принятыми представлениями иотенциал в слое Гельмгольца при увеличении расстояния от слоя потенциалопределяющих ионов сни- [c.54]


    Современная теория двойного электрического слоя использует теорию Гуи — Чепмена для описания диффузий части этого слоя. В первоначальном виде теория Гуи — Чепмена ие учитывала наличия слоя Гельмгольца и поэтому ее допущения не позволяли правильно описать электрические явления, на которые существенное влияние оказывает плотная, непосредственно прилегающая к межфазной поверхности часть слоя. Пренебрежение размерами иоиов приводит к тому, что не учитывается минимальная толщина слоя, и это в свою очередь вызывает большие ошибки при расчете параметров двойного электрического слоя. Теория Гуи — Чепмена, учитывая только концентрацию и заряд нонов электролитов, не объясняет различного действия ионов разной природы, связанного со специфической адсорбцией их на межфазной поверхности. [c.60]

    А. Н. фрумкиным и его школой теория замедленного разряда была усовершенствована (1933—1950 гг.) введением в кинетическое уравнение (533) вместо объемной Сн+ поверхностной концентрации сн+ и учетом влияния на эту концентрацию и энергию активации процесса 2 строения двойного электрического слоя через величину г] , т. е. [c.253]

    Энергия двойного электрического слоя, как следует из теории ДЛФО, играет первостепенную роль применительно к стабильности и коагуляции дисперсных систем. Так, раствор любой присадки в масле является олеофильным коллоидом, в котором плотность заряда значительно ниже, чем в лиофобных коллоидах. Снижение плотности заряда в масле сопровождается уменьшением диэлектрической проницаемости, что приводит к образованию более проч- [c.216]

    На границах раздела двух фаз различного химического состава, как правило, происходит перераспределение электрического заряда, связанное с переходом заряженных частиц (ионов, электронов) из одной фазы в другую. Это приводит к образованию заряда на поверхности одной фазы и равного, но противоположного по знаку заряда в другой фазе. Таким образом, на границе раздела фаз возникает двойной электрический слой. Теория двойных электрических слоев была впервые разработана Гельмгольцем [53] значительный вклад в эту теорию внесли Перрен [54], Гюи [55], Дебай и Хюккель [56]. [c.16]

    Модель двойного электрического слоя, отвечающая этим простейшим представлениям, ириводит к двум возможным значениям -потенциала. Если предположить, что все заряды, находящиеся в растворе, способны перемещаться вместе с жидкостью или при движ( нии твердого тела относительно жидкости пе увлекаться вместе с ним, то -потенциал по величине -будет совпадать с -потенциалом, и его изменение с концентрацией электролита должно подчиняться формуле Нернста. Если заряды, находящиеся в растворе, при относительном движении жидкости и твердого тела связаны только с последним и перемещаются вместе с ним, то -потенциал всегда будет равен нулю. Ни одно из этих следствий, вытекающих из теории Гельмгольца, не согласуется ни с экспериментально установленным соотно1дением между (или й м.ь) и -потенциалами, ни с найденной экспериментально зависимостью -потенциала от концентрации (если не считать, что -потенциал лзожет быть равен нулю в очень концентрированных растворах электролнтов и ири определенном составе раствора, отвечающем изоэлектрической точке). Теория Гельмгольца не объясняет также причины изменения заряда повер> ности металла в присутствии поверхностно-активных веществ при заданном значении -потенциала. Вместе с тем теория конденсированного двойного слоя позволяет получить значения емкости двойного слоя, согласующиеся с опытом, а при использовании экспериментальных значений емко- [c.262]


    ДАЛЬНЕЙШЕЕ РАЗВИТИЕ ТЕОРИИ СТРОЕНИЯ ДВОЙНОГО ЭЛЕКТРИЧЕСКОГО СЛОЯ [c.271]

    Теория медленного разряда в том виде, в каком она была изложена Фольмером, не учитывала строения границы электрод — раствор, потому не могла объяснить влияния состава электролита на величину водородного перенапряжения. Влияние строения двойного электрического слоя на кинетику электрохимических реакций впервые было принято во внимание [c.627]

    Углеводородные топлива при перекачках могут электризоваться, т. е. в них может накапливаться заряд статического электричества определенного знака. Возникновение зарядов и их величина обусловлены процессами образования на границе топливо-твердое тело двойного электрического слоя и разделения его обкладок. Законченной теории электризации пока не разработано. Различными исследованиями установлено, что электризация углеводородных топлив в основном зависит от их состава и содержания дисперсной фазы, скорости потока, природы и вида поверхности оборудования, а также от площади соприкосновения с ней. [c.166]

    Кинетика электрохимических процессов изложена последовательно на основе теории замедленного разряда и теории двойного электрического слоя. В логической последовательности получены выражения для стационарных электродных процессов трех типов обратимых, квазиобратимых и необратимых. Менее подробно рассмотрены нестационарные процессы. [c.4]

    Было предпринято много попыток разработать теорию двойного электрического слоя, которая бы количественно согласовывалась с опытными данными. Так, Райс (1926—1928) высказал предположение, что и внутри металла пе все заряды локализованы в одной плоскости, а распределяются в его объеме с постепенно убывающей плотностью. Одпако представление о двух диффузных слоях по обе стороны границы раздела вряд ли приложимо к тому случаю, когда одна нз граничащих фаз. чвляется металлом. Возможно, что оио реализуется на границе ионопроводящих фаз, а также на границе полупроводника с раствором. [c.271]

    Существенно, что, варьируя ионный состав электролита, мол<-но менять толщину приповерхностного слоя. Например, ионы Са + способны вытеснять воду из области полярных головок и тем самым сжимать приповерхностный слой [430]. Обычно толщиной этого слоя пренебрегают и считают, что все поверхностные источники электрических полей строго локализованы на границе раздела бислой/липид, а сама эта граница считается геометрической плоскостью. Такое допущение позволяет проводить теоретический анализ электрических явлений на основе классической теории Гуи — Чепмена [431], в рамках которой структура двойного электрического слоя (ДЭС) определяется лишь поверхностными зарядами. При этом оказывается, что поверхностные электрические диполи, если они присутствуют в системе, не влияют на эту структуру. Существует целый ряд проблем, для которых предположение о локализации источников электрических полей строго на границе раздела является слишком грубым. Оказалось, что трехмерность распределения поверхностных электрических зарядов заметно влияет на элект- [c.150]

    Первая иоиытка количественного оформления теории замедленного разряда была предпринята Эрдей-Грузом и Фольмером в 1930 г., хотя некоторые ее положения уже содержались в работах Батлера (1924) и Одюбера (1924). Эрдей-Груз и Фольмер вывели формулу, связывающую потенциал электрода иод током с плотностью тока. Выведенная ими формула является основным уравнением электрохимического перенапряжения и согласуется с эмпирическим уравнением для перенапряжения водорода. Однако теория замедленного разряда в ее первоначальном виде содержала ряд недостаточно обоснованных допущений и не могла удовлетворительно описать всю совокупность опытных данных. Наибольший вклад в теорию замедленного разряда был внесен А. Н. Фрумкиным (1933), который впервые учел влияние строения двойного электрического слоя на кинетику электрохимических процессов. Его идеи во многом определили основное направление развития электрохимической науки и ее современное состояние. [c.345]

    Теория строения двойного электрического слоя приводит к выводу, что в разбавленных растворах кислот, не содержащих посторонних электролитов  [c.254]

    Таким образом, теория замедленного разряда дает хорошее совпадение коэффициента с опытными данными и объясняет также зависимость т] от pH раствора и строения двойного электрического слоя. [c.255]

    При установившемся равновесии обменного процесса поверхность ионита и раствор приобретают электрические заряды противоположного знака, на границе раздела ионит — раствор возникает двойной электрический слой, которому соответствует скачок потенциала. Поскольку иониты обладают повышенной избирательной способностью по отношению к определенному виду ионов, находящихся в растворе, ионообменные электроды называются также ионоселективными. Стеклянный электрод является важнейшим среди этой группы электродов. Он представляет собой тонкую мембрану из специального стекла, в котором повышено содержание щелочных составляющих — соединений натрия, лития и др. Согласно теории Б. П. Никольского потенциалопределяющий процесс на границе раствор — стекло заключается в обмене между ионами щелочного металла, например Ма+, содержащимися в стекле, и ионами Н+, находящимися в растворе  [c.484]


    Скачок потенциала в диффузном двойном электрическом слое называют диффузным ф1-потенциалом. Если общий скачок потенциала равен ф, то скачок потенциала в плотном д. э. с. равен ф — гр (см. рис. 80). ф1-Потенциал имеет важное значение для теории строения [c.302]

    Теория образования двойного электрического слоя позволяет удовлетворительно объяснить известные явления электризации жидкости при ее движении относительно твердой фазы. Диффузная часть двойного электрического слоя увлекается потоком жидкости, перенося электрические заряды. При этом заряды переносятся в результате конвекции, электрической проводимости и диффузии. Однако влияние диффузионного переноса на электризацию существенно меньше первых двух видов переноса. [c.115]

    Уравнения (II. 109) и (II. ПО) учитывают специфическую адсорбцию только противоионов. При невысоких концентрациях электролита можно пренебречь единицей в знаменателе уравнения (II. 110). Таким образом, теория Штерна (II. ПО) и теория Гун — Чепмена (11.105) позволяют рассчитать соответственно заряд в плотном и диффузном слоях. Рассчитанные с учетом этих уравнений значения емкости двойного электрического слоя для различных концентраций электролитов удовлетворительно совпадают с результатами, полученными по данным электрокапиллярных измерений. [c.61]

    В наиболее общем виде эта теория была разработана советскими учеными Б. В. Дерягиным и Л. Д. Ландау в 1937—1941 г.г. и несколько позднее независимо от них голландскими учеными Фер-веем и Овербеком. По первым буквам этих фамилий эта теория названа теорией ДЛФО. Чтобы получить представление о существе этой теории и ее следствиях, разберем простейший случай взаимодействия крупных частиц, для которых можно не учитывать теплового движения. Взаимодействие крупных частиц можно рассматривать как взаимодействие между двумя плоскими параллельными пластинами, т. е. принять, что линейный размер частиц значительно больше толщины двойного электрического слоя. [c.325]

    Существование между твердым телом и раствором наряду с общим скачком потенциала также -потенциала следует учитывать при разработке теории строения двойного электрического слоя. Эта теория должна объяснить не только причины появления элек-трокинетического потенциала, но и характер его изменения с составом раствора и, в частности, явление перезарядки поверхности. [c.234]

    Значительный интерес представляет влияние, которое оказывают поверхиост-ио-активные органические вещества на строенле двойного электрического слоя и на форму электрокапиллярных кривых. Впериые этот вопрос был разработан А. Н. Фрумкиным в 1926 г. Сущность теории Фрумкина сводится к следующему. [c.245]

    При изучении электрокинетических и электрокапиллярных явлений были установлены определениьк опытные закономерности. Корректная теория строения двойного электрического слоя металл — электролит должна давать нх истолкование. Эти же факты служат критерием сираведливости тех 1ли иных вариантов теории двойного электрического слоя. [c.260]

    Первую количественную теорию строения двойного электрического слоя на границе металл — раствор связывают обычно с именем Гельмгольца (1853). По Гельмгольцу, двойной электрический слой можно уподобить плоскому конденсатору, одна из обкладок которого совпадает с плоскостью, проходящей через поверхностные заряды в металле, другая — с плоскостью, соединяющей центры тя- кестн зарядов 1, онов, находящихся в растворе, по притянутых электростатическими силами к иоверлиости металла (рис. 12.1). Толщина двойного слоя I (т. е. расстояние между обкладками [c.261]

    Теория Гуи—Чапмана оправдывается лучше всего там, где теория Гельмгольца оказывается неприложнмой, и, наоборот, последняя дает лучшую сходимость с опытом в тех случаях, когда первая дает неверные результаты. Следовательно, строению двойного электрического слоя должно отвечать некоторое сочетание моделей, предложенных Гельмгольцем п Гуи — [c.267]

    Чапманом. Такое предпо-ложенне было сделано Штерном (1924) в его адсорбционной теории двойного электрического слоя. Штерн полагал, что определенная часть ионов удерживается вблизи поверхностн раздела металл — электролит, образуя ге./1ьмгольцевскую пли конденсированную обкладку двойного слоя с толщиной, отвечающей среднему радиусу попов электролита. Здесь Штерн следовал принципам, заложенным во втором приближении теории Дебая и Гюккеля. Таким образом, успехи теории растворов в свою очередь содействовали развитию теории двойного электрического слоя иа границе электрол — электролит. Остальные иопы, входящие в состав двойного слоя внутри гел ьм гол ьцеп с ко й обкладки, по ис удерживаемые жестко на поверхности раздета, распределяются диффузно с постепенно убывающей плотностью заряда. Для диффузной части двойного слоя Штерн, так же как и Гуи, пренебрег собственными размерами нонов. Кроме того, Штерн высказал мысль, что в плотной части двойного слоя ионы удерживаются за счет не только [c.267]

    Теория Штерна дает качественно правильную картину двойного электрического слоя. Она широко используется при рассмотрении тех электрохимических явлений, в которых структура двойного слоя играет существенную роль. Но теория Штерна, как это отмечал сам автор, не свободна от мсдостатков. К их числу относятся невозможность количественного описания емкостных кривых — экспериментальные и расчетные кривые отклоняются друг от друга, особенно при удалении от потенциала нулевого заряда, несовместимость некоторых из ее основтых положений, например сохранение заряда в плотном слое при отсутствии специфической адсорбции, и т. д. [c.270]

    Появление оксида на иоверхности металла изменяет строение двойного электрического слоя. В этом случае его уже нельзя представить простой моделью Штерна — Грэма, которая использовалась ири создании теории водородного перенапряжения. В этом случае, по Гэру и Ланге (1958 , к падению потенциала в гельмгольцевской и диффузной частях дво1И1ого слоя, учитываемых в модели Штерна Грэма, следует добавить падеиие потенциала в слое оксида (рис. [c.427]

    Первые предположения о его образовании были сделаны Квинке. Строение двойного электрического слоя впервые было представлено Гельмгольцем и Перреном по аналогии со строением плоского конденсатора. Предполагалось, что, как и в плоском конденсаторе, на границе соприкасающихся фаз заряды располагаются в виде двух рядов разноименных ионов. Толщина слоя считалась близкой к молекулярным размерам или размерам сольватированных ионов. Потенциал слоя снижается на этом расстоянии линейно до нуля. Поверхностный заряд <7 определяется в соответствии с теорией плоского конденсатора уравнением (11.80)  [c.54]

    Дальнейшее развитие теории двойного электрического слоя было дано в работах Фрумкина и его школы, Бокриса, Деванатхана, Есина, Мюллера, Парсонса, Эршлера и др. Наибольшее признание и распространение получила модель двойного электрического слоя, предложенная Грэмом (1947). Согласно Грэму, обкладка двойного электрического слоя, находящаяся в растворе, состоит не из двух, как предполагал Штерн, а из трех частей. Первая, считая от поверхности металла, называется внутренней плоскостью Гельмгольца, в ней находятся лишь поверхностно-активные ноны либо если их нет в растворе, молекулы растворителя-. В первом случае заряд плоскости равен <71, во втором — нулю ( 71 = 0), потенциал ее, отнесенный к раствору, обозначается ч( рез г 5). Следующая, удаленная от поверхности металла на расстояние, до которого могут подходить ионы (центры их заряда) в процессе теплового движения, называется внешней плоскостью Гельмгольца ее общий заряд, отнесенный к единице поверхности, равен /2, а потенциал плоскости -фг- [c.271]

    Оба эти уравнения также дают возможность определить истинное. значение коэффициента переноса. Такой метод построения поляризационных кривых и определения величин а и /о был предложен Делахеем с сотр. и проверен на ряде электрохимических реакций. Метод предполагает, что величину гр1 можно рассчитать на основе теории двойного электрического слоя с использованием данных, относящихся к равновесным условиям. Допускается, что прохождение тока не изменяет существенно структуру двойного слоя. Это допущение оправдывается, по мигнию Делахея, с достаточно хорошим приближением вплоть до весьма высоких плотностей тока. [c.367]

    Результаты измерений вязкости в пористом стекле (г= = 10 нм) показаны точкой а на рис. 1.1. В этом случае влияние электровязкости было мало в связи с сильным перекрытием двойных электрических слоев (ДЭС). Теория дает в этом случае электровязкостную поправку, не превышающую долей процента [13]. [c.9]

    Двойной слой на границе раствор —металл создается электрическими зарядами, находящимися на металле, и ионами противоположного знака (противоионами), ориентированными у поверхности электрода. В формировании ионной обкладки двойного слоя принимают участие как электростатические силы, под влиянием которых противоионы подходят к поверхности электрода, так и силы теплового (молекулярного) движения, в результате действия которых двойной слой приобретает размытое, дис узное строение. Кроме того, в создании двойного электрического слоя на границе металл — раствор существенную роль играет эффект специфической адсорбции поверхностно-активных ионов и молекул, которые могут содержаться в электролите. Теория двойного электрического слоя сложилась на основе работ Гельмгольца, Штерна, А. Н. Фрумкина и др. [c.473]

    На основе строения ССЕ и теории двойного электрическог1) слоя Штерна, но МОжны два случая. Первый характеризуется отношением hjr—>-0 в этом случае толщина двойного слоя П(з Гельмгольцу — Перрену на поверхности ядра ССЕ мала и приближается к монослою. Второй случай описывается отношением /г/г—оо. Для этого случая толщина двойного электрического слоя. значительна по сравнению с радиусом кривизны ядер ССЕ. Распределение молекул в адсорбционно-сольватном слое отличается от первого случая. [c.159]

    Штерн предложил р ассматривать двойной электрический слой состоящим из двух частей внутренней (плотный слой Гельмгольца) и внешней (диффузный слой). Это позволило использовать теорию Гуи — Чепмена для описания строения внешней части слоя, где можно пренебречь адсорбционными силами и размерами иоиов. Внутреннюю часть Штерн представил как адсорбционный мопоионный слой толщиной не менее двух радиусов ионов (см. рис. 11.13). Введенный Штерном потенциал часто называют штерновским. [c.60]

    II. Ленгмюра (1917), Г. Фрейндлиха (1926), Н. А. Шилова (1915—1930), а также закладываются основы теории двойного электрического слоя Г. Гун, Д. Чепмена, О. Штерна (1910—1924). Учение о поверхностных явлениях пос-тепенно становится основой коллоидной химии, ее 1еоретическнм фундаментом. Третье десятилетие нашего века явилось периодом окончательного формирования коллоидной химии как самостоятельной науки со своими объектами и методами исследования. [c.17]

    В курсе коллоидной химии рассматривается общая теория двойного электрического слоя и электрических межфазных явлений, значение которых выходит далеко за рамки данной науки. Кроме ионообменной адсорбции, электрокинетических явлении, стабилизации и коагуляции дисперсных систем и других процессов, изучаемых в данном курсе, электрические межфазные явлеиия в значительной мере определяют электродные процессы (электрохимия), процессы массопереноса через межфазиую поверхность, каталитические, мембранные, биологические процессы, обусловливают свойства полупроводниковых и других материалов. [c.44]

    Это уравиенне после двойного интегрирования позволяет получить соотношение, выражающее закон изменения поверхностного потенциала от расстояния в диффузной части двойного электрического слоя и от свойств раствора. Чтобы в полной мере представлять возможности соотнонюння (П. 87), лехсащего в основе теории двойного электрического слоя, необходимо напомнить основные допущения и предположения, сделанные Гун и Чепменом при его выводе двойной электрический слой является плоским, диэлектрическая проницаемость не зависит от расстояния х, ноны представляют собой точечные заряды (т. е. не имеют объема), при переводе противоионов из объема раствора в двойной электрический слой совершается работа только против электростатических сил. [c.56]

    Электростатический фактор заключается в уменьщении межфазиоро натяжения вследствие возникновения двойного электрического слоя иа поверхности частиц в соответствии с уравнени" ем Липпмана. Появление электрического потенциала на межфазной поверхности обусловливается поверхностной электролитической диссоциацией или адсорбцией электролитов. Основы электростатической теории устойчивости лиофобных систем излагаются в разделе VI. Б. [c.275]


Смотреть страницы где упоминается термин Двойной электрический слой теории: [c.97]    [c.245]    [c.249]    [c.263]    [c.265]    [c.371]    [c.467]    [c.198]    [c.455]    [c.474]    [c.61]   
Двойной слой и кинетика электродных процессов (1967) -- [ c.51 ]




ПОИСК





Смотрите так же термины и статьи:

Гельмгольца Гуи теория двойного электрического слоя

Гои Чапмена теория двойного электрического слоя

Дальнейшее развитие теории строения двойного электрического слоя

Двойной слой теория

Двойной теория

Двойной электрический

Двойной электрический слои

Двойной электрический слой

Двойной электрический слой и электрокапиллярные явления Теория двойного электрического слоя

Двойной электрический слой теории строения

Двойной электрический слой теория Гельмгольца и след

Двойной электрический, слои. Адсорбция на границе металл—раствор Общие вопросы электрохимической кинетики и теория водородного перенапряжения

Мартынов. Статистическая теория двойного электрического слоя

Основы теории строения двойного электрического слоя

Рейхардта теория двойного электрического слоя

Теория двойного электрического слоя с дискретным строением специфически адсорбированного заряда (В. С. К р ы л о в)

Учет специфической адсорбции ионов в теории двойного электрического слоя

Электрический двойной слой диффузный, теория



© 2025 chem21.info Реклама на сайте