Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Стирол гидроперекись

    В системе стирол — гидроперекись /пре/п-бутила, рассмотренной выше, быстрая ионная реакция обусловливает разложение большей части инициатора. Однако в этом случае не исключена возможность протекания индуцированного гомолиза, так как свободные радикалы образуются с аномально большой скоростью [6]. Мы показали один из простых примеров молекулярно-инду-цированного гемолиза, который хорошо изучен. В то же время детально изучить такую систему трудно, ибо ини- [c.115]


    Стирол, гидроперекись изопропилбензола [c.256]

    Стирол, гидроперекись изопропилбензола Стирол, метилметакрилат Стирол [c.256]

    Стирол, гидроперекись изопропилбензола, альдегиды [c.256]

    Стирол, гидроперекись изопропилбензола, хлорорганические соединения, альдегиды Стирол, гидроперекись изопропилбензола, альдегиды Стирол, гидроперекись изопропилбензола [c.256]

    Стирол, гидроперекись изопропилбензола, акрилаты Стирол, гидроперекись изопропилбензола, толуол, альдегиды Стирол, гидроперекись изопропилбензола, толуол, альдегиды [c.257]

    Раздражающее действие на кожу оказывают водные вытяжки из полиэфирных стеклопластиков. Трубы из полиэфирных стеклопластиков ухудшают вкус воды и придают ей специфический запах даже после непродолжительного контакта, в результате чего вода становится непригодной для питья [17, с. 58]. В зависимости от рецептуры стеклопластика в воде обнаруживаются стирол, гидроперекись изопропилбензола, кобальт и другие химические соединения. [c.532]

    Всеобщее внимание привлекли публикации и патенты [74—8 il, в которых описан метод одновременного получения окиси пропилепа и стирола. В этом процессе исходными продуктами являются этилбензол и пропилен. Этилбензол при 130 °С и давлении около 3,5 кгс/см в присутствии катализатора нафтената молибдена под воздействием кислорода превращается в гидроперекись а-этилбен-зола. При одноразовом проходе конверсия достигает 13%, а выход — 84%. Из гидроперекиси а-этилбензола при взаимодействии с пропиленом при 110 °С в присутствии нафтената молибдена образуются фенилметилкарбинол и окись пропилена. В результате отщепления воды от фенилметилкарбинола получается стирол. При использовании в качестве катализатора двуокиси титана и температурах 182— 282 С (оптимально 200—250 С) выход стирола составляет 80—95%. [c.82]

    Однако более экономичен метод совместного получения стирола и эпоксисоединений, например окиси пропилена [4]. Этилбензол здесь также окисляется в жидкой фазе, но в основном до гидроперекиси, а не продуктов ее распада. По данным Эмануэля [5], гидроперекись этилбензола и соответствующий спирт реагируют с перекисными радикалами значительно быстрее исходного углеводорода, Это должно приводить к образованию значительных [c.733]

    Если мировое производство стирола измеряется миллионами тонн в год и оно постоянно увеличивается, то а-метилстирола производят в десятки раз меньше. Промышленный способ синтеза а-метилстирола впервые освоен в СССР [18]. Он был основан на автоокислении кумола в гидроперекись, превращении последней под действием щелочи в диметилфенилкарбинол и его дегидратации над окисью алюминия. Однако несколько лет назад указанное [c.736]


    При взаимодействии пропилена с бензолом образуется изопропилбензол (кумол). Изопропилбензол является высококачественной добавкой к автомобильному и авиационному топливу. В на-. стоящее время большие количества его расходуются для получения а-ме ТИЛ стирол а, а также фенола и ацетона. При окислении изопропилбензола сначала образуется гидроперекись изопропил-бензола и далее фенол и ацетон. Метод получения фенола и ацетона через изопропилбензол впервые был разработан в СССР. Он весьма перспективен. По указанному методу работает много заводов как в СССР, так и за рубежом. [c.77]

    Стирол в США производится не только каталитической дегидрогенизацией этилбен к)ла, но и заимствованным в Германии методом его окисления через гидроперекись [75]. [c.505]

    Многовариантность производственных процессов, обусловленная с одной стороны тем, что один и тот же продукт может быть получен из различных видов сырья (например, ацетальдегид из ацетилена и этилена) или различными методами (например, стирол из этилбензола каталитическим дегидрированием и через гидроперекись), а так же с тем, что одно и то же сырье может быть использовано для производства различных продуктов (например, из этилена могут быть получены этанол, винилацетат, уксусная кислота и другие продукты). [c.239]

    Сырье бутадиен СН2=СН—СН=СН2, стирол С Нв—СН=СНг. Вспомогательные материалы гидроперекись изопропилбензола [c.235]

    Водная фаза, содержащая эмульгатор и сульфит натрия, готовится в аппаратах 24, куда из баков 25 перекачивается обессоленная вода (1,75 Л1 ), из аппарата 23 касторовое мыло (64 кг), приготовляемое в варочном аппарате 10, и из емкости 21 сульфит натрия в виде 10%-ного раствора. Водная фаза контролируется по кислотности (pH = 3,5 7) и непрерывно перекачивается в эмульгатор 1, где тщательно перемешивается со стиролом, подаваемым из сборника 8. Эмульсия направляется в подогреватель 4, где нагревается до 40°, и передается в последовательно подключенную систему полимеризаторов 5. В первом из них эмульсия смешивается с раствором инициатора (гидроперекись), подаваемым пз аппарата 7 для приготовления раствора. В полимеризаторах теплой водой, поступающей в рубашку, поддерживается температура 60°. [c.811]

    Покрытие на основе ненасыщенных полиэфирных смол. Покрытие состоит из грунтовочного, покрывного и отделочного слоев, в которых в качестве пленкообразующего используют ненасыщенную полиэфирную смолу ПН-1 (МРТУ 6-05-1082—67) [2, с. 24—26]. Ненасыщенная полиэфирная смола представляет собой твердый нерастворимый полимер трехмерной структуры, образующийся при сополимеризации ненасыщенного полиэфира (молекулярная масса 400—10 000) с низкомолекулярным растворителем стиролом при комнатной или повышенной температуре. В случае полимеризации при комнатной температуре в композицию вводят инициатор (чаще всего гидроперекись кумола) и ускоритель (нафтенат кобальта). [c.81]

    Гидроперекись /г-ментана добавляют к 4,5 ч, (1,0 мл, если используют колбу на 120 мл) стирола. [c.72]

    Наибольшее распространение в производстве шин и других резиновых изделий в настоящее время получил бутадиенстирольный каучук. Совместная полимеризация осуществляется в водной среде при температуре от 5 до 50 °С в батарее, последовательно соединенных между собой полимеризаторов, что позволяет увеличить время пребывания реакционной массы. Приготовленная заранее смесь бутадиена со стиролом смешивается с водой и эмульгатором (например, канифольное мыло) в аппарате предварительного эмульгирования. Готовая эмульсия вместе с раствором инициатора (гидроперекись изопропилбензола) непрерывно закачивается в первый по ходу полимеризатор. Из 12 аппаратов батареи всегда работает 11. Каждый полимеризатор, изготовленный из биметалла или футерованный кислото- [c.592]

    Определению не мешают гидроперекись изопропилбензола, перекись бензоила, малеиновый и фталевый ангидриды, диметиланилин, дитолилметан, аммиак, бензол, изопрен, дивинил, хлоропрен, метакриловая и акриловая кислоты. Мешает определению а-метил-стирол. [c.54]

    Диэтилвинилфос- фонат Стирол Гидроперекись трет, бутила, 80—154° [320] [c.164]

    Дихлоргидринпентаэритрит, метан, водород, окись углерода, двуокись углерода Ацетальдегид, формальдегид, бензальдегид, малеиновая кислота Хлористый водород, формальдегид, ацетальдегид, бензальдегид, малеиновая и фумаровая кислоты, вода, двуокись углерода Стирол, гидроперекись изопропилбензола, малеиновый ангидрид [c.256]

    Стирол, гидроперекись изопропилбензола, метакрилаты Малеиновый ангидрид, гидроперекись изопропилбензола, толуол, изо-пронилбензол Малеиновый и фталевый ангидриды, гидроперекись изопропилбензола, изопропилбензол, толуол Толуол [c.257]

    В приведенном выше примере гидроперекись образуется в результате замещения молекулой кислорода активированного углеродного атома у двойной связи. В процессе замещения может произойти смещение двойной связи, но не разрушение ее. При образовании двузамещенных перекисей процесс окисления протекает через прямое соединение кислорода с двойной связью. Так происходит в случае стирола, который при таком окислении образует полимер путем процесса, подобного сополимеризации. Полимер перекиси представляет собой нелетучий смолоподобный продукт, состоящий из следующих структурных единиц  [c.286]


    Окислительно-восстановительные системы являются эффективным средством для интенсификации процесса полимеризации. Так, применяя систему гидроперекись фенилциклогексана — силикат железа — пирофосфатный комплекс железа, в присутствии в качестве эмульгаторов канифолевого мыла и лаурата калия, можно провести сополимеризацию бутадиена со стиролом в эмульсии за [c.140]

    Технологическое оформление процесса сополимеризации бутадиена со стиролом подробно описано в литературе [19, 21, 22]. Водные растворы компонентов рецептуры готовят в нержавеющих или гуммированных аппаратах, снабженных перемещивающим устройством и змеевиками для обогрева. Раствор эмульгатора концентрацией около 10% получают путем омыления карбоновых кислот щелочью. Растворы других исходных продуктов имеют, как правило, меньшую концентрацию трилонового комплекса железа— 1—2%, ронгалита — около 2%, диметилдитиокарбамата натрия — около 1%-. Гидроперекись можно подавать в реакционную смесь непосредственно или в виде 3—5%-ной водной эмульсии. Растворы регуляторов — дипроксида или трег-додецилмеркап-тана готовят в стироле или а-метилстироле с концентрацией, определяемой условиями производства. При приготовлении смеси мономеров (часто называемой шихтой ) бутадиен и стирол предварительно освобождают от ингибиторов. Водную фазу получают при перемешивании и последовательной подаче в аппарат деминерализованной воды, растворов эмульгатора, диспергатора и электролита. Водная фаза имеет pH около 10—11. Для лучшей воспроизводимости кинетики сополимеризации и свойств каучука растворы всех исходных продуктов и смесь мономеров готовят и хранят под азотом, так как кислород воздуха, как указано выше, является ингибитором полимеризации. [c.251]

    Наиболее широко изучено окисление 1,1-дифенилэтана, что, вероятно, можно объяснить легкостью выделения гидроперекиси этого углеводорода и ее высокими инициируюштнми свойствами для низкотемпературной сополимеризации дивинила со стиролом. При пропускании кислорода через 1,1-дифенилэтан со скоростью 6— 8 мл мин при 65—70° С концентрация гидроперекиси достигает 28,5%. Гидроперекись можно выделить в виде кристаллов или не выделяя разложить серной кислотой на фенол и ацетофепол [269]. [c.285]

    Рецепт для получения латекса (вес. ч.) дивинил — 70 стирол — 30 вода — 200 мыла модифицированлой канифоли калиевое — 4,6 натровое — 4,4 мыла СЖК Сю— ie калиевое — 1,2, натровое — 1,1 лейканол 0,3 хлористый калий — 1,0 трилон Б — 0,04 ронгалит 0,1 три-натрийфосфат — 0,1 гидроперекись изопропилбензола — 0,17 сернокислое железо закисное — 0,02 третичный додецилмеркаптан — 0,15. [c.153]

    Ра )работай метод совместного получения стирола и окнсн пропилена нз этилГ)Си ч(1ла Последний окисляют в гидроперекись в присутствии пропи-.чер 0  [c.207]

    Полимеризация при 5°. Компоненты (примечание 13) для полимеризации добавляют в том порядке, как указано в предыдущей методике (примечание 2) 195 ч. воды нагревают до 50°, при перемешивании добавляют дрезинат214 (калиевая соль кислоты канифольного масла) и фосфат натрия до полного растворения (примечание 3). Раствор охлаждают до комнатной температуры и доводят pH до 10,0 (примечание 4). Затем в полимеризационную систему добавляют раствор эмульгатора (примечания 4 и 5). После этого растворяют грег-додецилмеркаптан в нужном количестве стирола (примечание 15) и вводят в реакционную колбу (примечание 4). Добавляют перегнанный бута-диен в небольшом избытке, чтобы путем испарения добиться нужной для полимеризации загрузки. Сульфат железа и натриевую соль формальдегидсульфо--1шслоты к остающимся 5 ч. дистиллированной воды добавляют в указанном порядке. Этот раствор вводят в систему с помощью шприца. Колбу вращают в термостате при 5° в течение 5 мин со скоростью 40 об/мин. К оставшемуся стиролу добавляют гидроперекись п-ментана (примечание 16) и с помощью шприца этот раствор вводят в систему. После этого колбу снова вращают в термостате при 5° со скоростью 40 об/мин. Для определения скорости полимеризации через разные промежутки времени отбирают пробы латекса (примечание 17). Вращение продолжают до тех пор, пока не будет достигнута нужная степень превращения. Полимеризацию заканчивают введением в систему раствора ингибитора, после этого колбу вращают [c.68]

    Исходные материалы ненасыщенный полиэфир—100 г (работа 40) гидроперекись кумола — 3 г стирол — 42,9 г гидрохинон —0,02% от веса полиэфира 8%-ный раствор нафтената кобальта в стироле (ускоритель НК-1)—8 г (стирол, введенный с инициатором, учитывается в общем количестве) стеклоткань, специально обработанная и нарезанная листами размером 20X20 см,— 150 г. [c.216]

    Для получения раствора полиэфира в стироле нагревают его дО 40° С и вводят при перемешивании /з стирола и Уз гидрохинона до полного их растворения, после чего добавляют небольшими порциями гидроперекись кумола, растворенную в оставшемся стироле, и нафтенат кобальта в виде 107о-ного раствора в стироле. [c.216]

    Свободная от следов металлов циклогексилгидроперекись является довольно стабильным соединением. Нагревание ее в растворе бензола при 70° С в течение 270 ч не приводит к заметному разложению. Эта гидроперекись может быть использована, однако, для инициирования полимеризации стирола. В присутствии следов катализаторов (например, 0,1% лаурата кобальта или марганца) при 80 С происходит быстрое ее разложение в смесь циклогексанона и циклогексаиола (50—75%) и высококипящих продуктов (10—30%), в том числе н-вале-риановой, н-капроновой и н-адипиновой кислот [c.82]

    Истинная скорость полимеризации стирола при 60° С в 100 раз больше вычисленной на основании известной скорости разложения гидроперекиси кумола в бензоле. Интересно, что гидроперекись реагирует с образованием радикалов с еще большей скоростью в смеси стирола с пиридином или бензиловым спиртом по сравнению с реакцией в чистом стироле или стирольнобензольных смесях [5]. [c.115]

    Наиболее важным промышленным применением таких окислительно-восстановительных реакций является низкотемпературная эмульсионная полимеризация смеси стирол — бутадиен при получении каучука в присутствии гидроперекиси кумола и ионов железа в качестве катализатора. Органические мономеры полимеризуются, превращаясь в маслообразные капли в водной эмульсии, которая стабилизируется добавлением мыла и щелочей. Типовой промышленный рецепт приведен в табл. 11.1. Как видно, смесь эта сложная, и в деталях неизвестно назначение каждого ее ингредиента. Из них представляют интерес гидроперекись, ион железа, пирофосфат Na4P207-IOH2O (который необходим для растворения железа), и тиол (его добавляют в качестве переносчика цепи для уменьшения выхода продуктов с низким молекулярным весом и чтобы обеспечить получение полимера, легко поддающегося обработке). [c.133]

    Эмульсионную полимеризацию стирола осуществляют в водном растворе эмульгатора в присутствии водорастворимых инициаторов (перекись водорода, Яерсульфаты калия и аммония, гидроперекись кумола и др.). В качестве эму.тьгаторов применяют соли жирных кислот (мыла), сульфированные высшие спирты жирного ряда, соли сульфокислот и др. Получаемый- полимер имеет размер частиц от I до 10 мкм. [c.83]


Смотреть страницы где упоминается термин Стирол гидроперекись: [c.65]    [c.310]    [c.310]    [c.310]    [c.311]    [c.311]    [c.197]    [c.364]    [c.364]    [c.116]    [c.183]    [c.410]   
Прогресс полимерной химии (1965) -- [ c.188 ]

Прогресс полимерной химии (1965) -- [ c.188 ]




ПОИСК





Смотрите так же термины и статьи:

Гидроперекиси



© 2024 chem21.info Реклама на сайте