Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Бьеррума теория ионных пар

    Довольно удачную теорию ионной ассоциации предложил Бьеррум в 1926 г.. Его модель — простейшая из возможных для такой системы. В теории Бьеррума предполагается, что ионы — твердые, неполяризованные сферы, а взаимодействие между ними — кулоновского типа. В качестве дополнительного приближения использована диэлектрическая проницаемость растворителя, хотя необоснованно считать ее величину вблизи иона такой же, как в объеме раствора. Согласно теории Бьеррума, все ионы противоположного знака, находящиеся на определенном расстоянии один от другого, ассоциируются в ионные пары. Это определенное расстояние к можно найти по уравнению [c.365]


    Теория Бьеррума является приближенной, так как исходит из сферической модели ионов, не учитывает дискретной молекулярной природы растворителя, сольватации ионных пар и другие эффекты. Поэтому предпринимались попытки ее усовершенствования, в частности, Р. Фуоссом и Ч. Краусом. По мере накопления экспериментального материала появилась также необходимость ввести классификацию ионных ассоциатов, подразделив их на следующие типы а) контактные ионные пары, в которых катион и анион находятся в непосредственном контакте друг с другом б) сольватированные ионные пары, в которых катион и анион связаны друг с другом через одну молекулу растворителя в) сольватно разделенные (или рыхлые) ионные пары, в которых катион и анион удерживаются вместе электростатическими силами, но между ними имеется значительное неопределенное количество молекул растворителя г) катионные, анионные и нейтральные ионные тройники, так называемые кластерные образования типа С+А-С+, А-С+А-, А-С +А- и др. д) квадруполи, например С+А-С+А-и т. п. [c.46]

    Если а — минимальное расстояние, на которое могут сблизиться противоположно заряженные ионы (они находятся в контакте между собой), то, согласно теории Бьеррума, те ионы образуют ионные пары, которые находятся на расстоянии не меньше а и не больше д. Следовательно, степень ассоциации можно вычислить путем интегрирования в этих пределах уравнения (5.1.68)  [c.502]

    Что такое первичный солевой эффект Самые общие представления о нем позволяют более глубоко понять сущность элементарных процессов химических реакций, протекающих в растворах. Рассмотрим один из аспектов Т гории сильных электролитов Дебая — Хюккеля (разд. 31.4), а именно зависимость коэффициента активности от ионной силы раствора. [Теория влияния нейтральных солей на скорость химических реакций в растворах была развита Бренстедом и Бьеррумом.] [c.184]

    Согласно теории ионной ассоциации, которую развил Бьеррум (см. стр. 208), именно малый размер и высокая валентность ионов, а также низкая диэлектрическая постоянная среды являются факторами, облегчающими образование ионных пар. Таким образом, опытные данные в общем согласуются с теорией, согласно которой неполная диссоциация обусловлена [c.147]

    Исследования электрической проводимости растворов, а также изучение спектров ЭПР показало, что в системах типа ионы — растворитель наряду со свободными ионами существуют и ионные пары , которые движутся как одно целое и не дают вклада в проводимость. Представление о ионных парах в 1924 г. были выдвинуты В. К. Семеновым и в 1926 г. Бренстедом. Одно из первых наблюдений, подтвердивших теорию ионных пар, было сделано Крауссом, обнаружившим, что хлорид натрия в жидком аммиаке сравнительно слабо проводит ток. Бьеррум указал, что, увеличивая расстояние между ионами, можно определить некоторое критическое его значение, такое, что ионы, удаленные на расстояние, большее критического, почти свободны, а ионы, находящиеся друг от друга на меньшем расстоянии, связаны. В настоящее время ионные пары рассматривают как частицы, обладающие совокупностью индивидуальных физико-химических свойств, находящиеся в термодинамическом равновесии со свободными ионами. Энергия связи в ионных парах в основном электростатическая, хотя дипольные и дисперсионные силы также вносят некоторый вклад в энергию взаимодействия. Несомненно и то, что свободные ионы в общем случае нарушают структуру растворителя, в результате чего достигается дополнительная стабилизация ионных пар. Если исходные молекулы растворяемого вещества содержат ковалентные связи А В, то образование ионной пары А+, В- может стимулироваться действием растворителя стабилизация пары достигается за счет энергии ее сольватации. Важную роль при этом играет способность молекул растворителя проявлять донорно-акцепторные свойства. Так, перенос электронного заряда на А, естественно, облегчает перенос а-электрона от А к В, что создает условия для гетеролитического разрыва связи А В и способствует возникновению ионной пары. Этот вопрос в более широком плане обсуждается в концепции, развитой В. Гутманом. [c.259]


    Теория ионной ассоциации Бьеррума, рассмотренная в разд. 5.1.5.2, трактует образование ионных пар на основе электростатики и в некоторой степени формальным образом. В действительности, однако, катионы и анионы могут связываться между собой несколькими способами и различия этих связей можно раскрыть детальным анализом явления. [c.512]

    С точки зрения электростатической теории ионный двойник сильно отличается от молекулы. Однако теория Бьеррума проверялась такими приемами (главным образом на основании данных об электропроводности), которые ничего не говорят о причинах образования ассоциатов. [c.119]

    Довольно удачную теорию ионной ассоциации предложил Бьеррум в 1926 г. Его модель — простейшая из возможных для такой системы. Б теории Бьеррума предполагается, что ионы — твердые, [c.349]

    В теории ионной ассоциации важную роль играет параметр д (параметр Бьеррума). Величина д представляет собой расстояние, на котором энергия электростатического взаимодействия ионов равна 2кТ. Она определяется из соотнощения [c.232]

    Теория ионной ассоциации Бьеррума (см.) выполняется в ряде случаев удовлетворительно, однако во многих случаях должны быть приняты во внимание дополнительные [c.52]

    Теория ионных пар Бьеррума качественно правильно объясняет ряд опытных данных однако, она не в полной мере применима для количественных расчетов, в частности, из-за условного характера значений а и г р (пределов интегрирования).  [c.201]

    Q(b) - функция в теории ионной ассоциации Бьеррума [c.16]

    Согласно рассматриваемой ниже теории ионных реакций Бьеррума — Брен-стеда, константа скорости реакций второго порядка между ионами одного знака должна увеличиваться с ростом концентраций ионов. Этот эффект наблюдается при концентрациях реагирующих веществ, превышающих [c.567]

    Метод Бьеррума содержит те же упрощения, что и модель Дебая— Хюккеля, в частности в отношении точных методов подсчета энергии пар ионов на малых расстояниях, когда, несомненно, большую роль играет молекулярная структура.. Тем не менее эта теория представляет значительный шаг вперед и дает удобную основу для оценки взаимодействий между ионами. Фуосс [51] рассмотрел вопрос о произвольном выбо ре критического расстояния г в и показал, что любое расстояние, на котором сила взаимодействия ионов составляет величину около 2кТ, дает аналогичные результаты. Фуосс совместно с Краусом применили описанную выше теорию к случаю диссоциации сильных электролитов в среде с меняющейся диэлектрической проницаемостью [52]. Было получено весьма хорошее совпадение теоретических расчетов и экспериментальных определений электропроводности. [c.453]

    Согласно теории Бьеррума, Фуосса и Крауса ассоциация ионов определяется только двумя переменными диэлектрической проницаемостью, которая характеризует свойства [c.128]

    В действительности при любой диэлектрической проницаемости Ig является линейной функцией от 1/е в ряду растворителей одной природы. Результаты этих исследований Фуосса и Крауса, как и наши исследования ассоциации в неводных растворителях различной природы, показывают также недостаточность теории ассоциации ионов по Бьерруму, которая учитывает только физические свойства растворителей — их диэлектрическую проницаемость и размеры ионов. [c.132]

    Степени ассоциации комплексов с анионами были определены экспериментально лишь в немногих случаях [211], но о роли ассоциации можно судить на основании теории ионной ассоциации Бьеррума ]122]. Бьеррум связал константу ассоциации для образования ионной пары К с зарядами двух ионов, составляющих пару (zj, Zj), и эффектившлм радиусом ионов (или расстоянием наибольшего приближения) ионной пары а уравнением [c.110]

    Недостатки теории Бьеррума. Электростатическая теория ионных ассоциаций Бьеррума в основном согласуется с экспериментом, однако она содержит и сомнительные положения и ее можно принять только как первое шриближение. По этой теории ионы считаются жесткими сферическими частицами, которые могут сближаться на расстояние а, и снижение интенсивности кулоновского взаимодействия вычисляется с использованием макроскопического значения диэлектрической проницаемости. В растворах, содержащих многозарядные ионы, как показано Робинсоном и Стоксом [39], применение макроскопического значения диэлектрической проницаемости оправдано. Так, в растворах 3 3-электролитов (например, Ьа[Ре(СЫ)б]) ионы не могут сближаться на расстояния, меньшие 7,2 А, и критическое расстояние образования ионной пары равно 32,1 А. Между сферическими поверхностями с радиусами 7,2 и 32,1 А вокруг ионов содержится примерно 5000 молекул воды, если объем молекулы воды принять таким же (30 А ), как в чистой воде. Для ионов [c.505]

    Диэлектрическая проницаемость при замене воды органическими растворителями уменьшается от 80 для воды до 33 для метанола, 24 для этанола, 21 для ацетона и 2,5 для диоксана. При понижении диэлектрической проницаемости силы притяжения между ионами в растворе увеличиваются, что приводит к их ассоциации и комплексообразованию. Хорошо известная теория ионных пар Бьеррума утверждает, что ассоциация между ионами разного заряда приводит к быстрому увеличению диэлектрической проницаемости, зависящей от зарядов и радиусов ионов, до некоторой определенной критической величины. Теория Бьеррума подтверждена экспериментально металлы, образующие хлоридные комплексы, значительно легче вымываются с катионитов смешанными растворами вода — ацетон и вода — спирт, содержащими 60—80% органической жидкости, чем водными растворами увеличивается, кроме того, избирательность вымывания. Это было замечено Фрицем и Реттигом [34, 35] и подтверждено другими авторами [36. Так, соляная кислота вымывает с катионита кобальт, оставляя никель, а кадмий и цинк вымываются в указанном порядке раньше ионов, не образующих устойчивых хлоридных комплексов. В качестве элюирующего реагента применяют, например, раствор тиоцианата в смеси вода — ацетон как для десорбции ионов с катионита, так и для сорбции на анионите [37]. [c.203]


    Представляется удивительным, что огромный экспериментальный материал практически не продвинул сколько-нибудь заметно вперед теорию ионных пар, и идеи Бьеррума, Фуосса, Денисона и Рамси остались господствующими. Исключение составляет лишь работа Танака и Исе [12]. [c.6]

    Отметим, что в теории Дебая—Хюккеля и Бьеррума фигурировала диэлектрическая постоянная ер чистого растворителя, что имеет смысл для разбавленных растворов. Однако Дебай и Полинг в дальнейшем показали, что при повышении концентрации изменением ер пренебрегать нельзя. Качественная картина влияния зарядов ионов на диэлектрическую постоянную, данная Хюккелем, сводится к рассмотрению влияния деформации полей, связанных с молекулами растворителя, за счет влияния на них соответствующих ионных сил. При сближении ионов друг к другу связанные с ними поля деформируются и деформируют поля окружающих их молекул растворителя. Взаимная деформация ионов в вакууме вела бы к дополнительному их притяжению вследствие возникновения электрических сил поляризации, действующих в одном направлении с кулоновскими межионньши силами. [c.400]

    Поскольку ПО теории Бьеррума все ионы, разделенные расстоянием, меньшим Гкрит, связаны в ионные пары, доля ассоциированных ионов 6 представляет собой интеграл Р(г)йг, нижний предел которого является расстоянием а максимально возможного сближения ионов в ионной паре [c.119]

    Необходимо сделать некоторые замечания. Для растворителей со средней диэлектрической проницаемостью первоначальное приближение Бьеррума, а также его последующие улучшенные варианты, предложенные Фуоссом [16] и позже Пуарье и Делапом [17], дают узкий экспоненциальный максимум Р г) при г = а, за которым следует относительно широкий и плоский минимум. Левая углубленная часть кривой Р г), как это видно из рис. V.5, остается практически неизменной при всех усовершенствованиях исходной теории Бьеррума. Концентрация ионных пар дается интегралом Р г) d r), взятым по всей левой глубокой части кривой, т. е. площадью под кривой при значениях г, близких к а. Изменение кривой распределения при больших значениях г не влияет на этот результат. Поэтому все рассмотренные выше приближения приводят к близким значениям Kass-Различия в форме кривых распределения при больших г (рис. V.5) зависят от учета удаленных ионных пар, которые следует рассматривать, однако, как свободные ионы, и поэтому эти изменения кривой [c.219]

    Гаич (1906) и Бьеррум (1906) выдвинули гипотезу о полной диссоциации (ион 13ЯЦИИ) сильных электролитов. В дальнейшем Бьеррум, Мильнер (1912) и Гс1Ш (1918) пытались на основе этой гипотезы создать новую теорию сильных электролитов, но безуспешно. Основы электростатической теории электролитов были заложены несколько позднее (1923 г.) работами Дебая и Г юкче. 1я. [c.395]

    В основе теории Бренстеда и Бьеррума также лежат представления о том, что реакция идет через стадию образования активированного комплекса X, который находится в равновесии с исходными веществами. Заряд активированного комплекса складывается из зарядов вступающих в реакцию ионов (2х=2аН-2в). Скорость рсакции определяется скоростью превращения активированного комплекса в продукты реакции (медленная стадия) [c.184]

    В. к. Семенченко (1924) и Н. Бьеррум (1926) указали, что при расчетах в теории Дебая — Гюккеля не учитывается возможность приближения противоположно заряженных ионов на такие расстояния, на которых энергия электростатического притяжения ионов оказывается больше энергии их теплового движения. В результате этого фактически образуется новая частица — ионная пара. Для растворов симметричных электролитов ионная пара в целом незаряжена, но обладает дипольным моментом. В растворах несимметричных электролитов ионные пары несут заряд, отличный от заряда ионов раствора, и возможна дальнейшая ассоциация с участием этих ионных пар. [c.45]


Смотреть страницы где упоминается термин Бьеррума теория ионных пар: [c.232]    [c.263]    [c.350]    [c.244]    [c.118]    [c.576]    [c.364]    [c.350]    [c.97]    [c.46]    [c.53]    [c.257]   
Современная химия координационных соединений (1963) -- [ c.69 , c.71 , c.110 ]




ПОИСК





Смотрите так же термины и статьи:

Бьеррум

Теория Бьеррума



© 2025 chem21.info Реклама на сайте