Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Полиизопрен кристаллизация

    Литиевый полиизопрен не кристаллизуется в недеформированном состоянии. Он характеризуется очень малой способностью к кристаллизации и при растяжении с заметной скоростью кристаллизация происходит лишь при больших относительных удлинениях способность этого каучука к кристаллизации была установлена по эффекту Джоуля. Более высокая регулярность построения макромолекул титанового полиизопрена обусловливает способность этого каучука к кристаллизации как в условиях деформации, так и при понижении температуры. Однако кристалличность его ориентированных вулканизатов несколько меньше, чем вулканизатов НК при любых (одинаковых) деформациях и температурах [15, 19], а температура плавления ниже (-7- 2 "С по сравнению с 4-f- 11°С у НК). Кристаллическая решетка синтетического полиизопрена является моноклинной и имеет такие же параметры, как и решетка НК. [c.205]


    Титановый полиизопрен состоит из золь- и гель-фракций. В серийном каучуке, полученном в алифатических растворителях, средняя молекулярная масса золь-фракций равна (1,2-ь1,5) 10 , а содержание гель-фракции составляет 20—30%- При использовании ароматических растворителей содержание геля ниже и он характеризуется более рыхлой структурой. Под влиянием сдвиговых напряжений, возникающих в процессе технологической обработки каучука, гель-фракция с рыхлой структурой может полностью разрушаться. Плотный гель остается в полимере и ведет себя как наполнитель. Сам по себе плотный гель кристаллизуется быстрее, чем исходный каучук и золь-фракция, в то же время с повышением содержания гель-фракции в каучуке полупериод кристаллизации его вначале уменьшается, а затем возрастает. Такой характер влияния геля объясняется, с одной стороны, ускорением образования зародышей кристаллов и, с другой стороны, уменьшением подвижности цепей и нарушением их структуры при большом содержании геля [23]. [c.207]

    Вопрос о полной замене НК синтетическим г ыс-1,4-полиизопреном в шинной и резиновой промышленности важен ввиду того, что некоторое количество НК нам пока еще приходится импортировать. Дело в том, что по ряду показателей, таких как когезионная прочность, клейкость, скорость и глубина кристаллизации СКЙ-3 пока еще уступает НК. Различия в свойствах СКИ-3 и НК объясняются некоторыми особенностями их молекулярного строения. Основными их характеристиками являются микроструктура полимера, средняя молекулярная масса, молекулярно-массовое распределение. [c.153]

    Характерной особенностью полиизопренов (ПИ) является их быстрая кристаллизация с возникновением различных НМО при деформациях и хранении (Гпл кристаллитов (мс-полиизопренов около 36 °С), а также — механохимическая деструкция при обработке на вальцах и в смесителях. [c.77]

    Диеновые полимеры, например, цис-, 4- и гране-1,4-полиизопрен и полибутадиен, а также 1, 2-полибутадиен, могут быть закристаллизованы и методами анионной полимеризации [19, 20, 24]. Эти методы позволяют в широких пределах регулировать изомерный состав цепей. В частности, могут быть получены полибутадиены с концентрацией цыс-1, 4-звеньев, достаточно высокой для того, чтобы именно они участвовали в кристаллизации. При плавлении указанных сополимеров наблюдаются те же закономерности, что и у полибутадиенов, полученных при эмульсионной полимеризации, с кристаллизующимися транс-1,4-звеньями [19]. Хотя значения температур плавления при этом и различаются, все же общий характер кривых плавления типичен для сополимеров. Посредством анионной полимеризации можно получить полиизопрен достаточно регулярной структуры, подобный по свойствам своим природным аналогам. Все [c.100]


    Большинство синтетических полимерных непредельных углеводородов (полибутадиен, полиизопрен и их сополимеры), полученных полимеризацией соответствующих мономеров с металлическим натрием в присутствии перекисных или диазосоединений, имеют нерегулярное строение, построены из звеньев различной конфигурации и не способны к кристаллизации. [c.409]

    Наличие в составе макромолекул полярных групп, усиливающих межмолекулярное взаимодействие, повышает модуль упругости полимера, но снижает его эластичность. Поэтому неполярные полимеры имеют обычно высокую эластичность, если в них отсутствует кристаллическая фаза. Такие полимеры, как полибутадиен, полиизопрен, полиизобутилен, сополимеры бутадиена со стиролом, являются высокоэластичными. Полимеры, склонные к кристаллизации, например полиэтилен, полипропилен, при обычной температуре мало эластичны. Введение в состав макромолекул небольших количеств полярных звеньев не снижает эластичности, так как некоторое увеличение межмолекулярного взаимодействия компенсируется нарушением регулярности строения полимерной цепи. С увеличением количества фрагментов полярной структуры сверх определенного предела эластичность полимеров понижается. Аналогично изменяется эластичность полимеров при введении в состав макромолекул больших по размерам заместителей, например фенильных групп в бутадиен-стирольных сополимерах. [c.69]

    Высокомолекулярные цис- и гранс-изомеры значительно отличаются по физическим, химическим и физико-механическим свойствам. Если 1,4-цыс-полиизопрен при комнатной температуре представляет собой мягкий эластичный материал, то 1,4-траяс-полиизо-прен, значительно более склонный к кристаллизации — это твердое, кожеподобное неэластичное вещество с высокой прочностью. [c.17]

    Синтетический цнс-полиизопрен практически равноценен натуральному каучуку как по физико-механическим, так и по технологическим свойствам. Он легко деструктируется при переработке и обладает хорошей клейкостью. Введение в цепь около 25% транс-звеньев, не влияя на температуру стеклования и эластичность резин, существенно снижает их механические свойства, особенно при повышенных температурах. Такое нарушение структуры приводит к значительному понижению скорости кристаллизации. Следует отметить, что разрыв резин из указанного каучука происходит при значительно более высоких удлинениях, чем из чистого с-полиизопрена. [c.528]

    Вклад энергетической составляющей в величину модуля эластичности тем больше, чем интенсивнее межмолекулярное взаимодействие в полимере, чем легче макромолекулы ориентируются при растяжении (вплоть до образования кристаллических структур). При этом оп возрастает для эластомеров с полярными заместителями (например, полихлоропреи, бутадиен-нитрильные каучуки и др.) или эластомеров, построенных из однотипных мономерных звеньев (каучуков регулярного строения, таких, как цисЛЛ-полиизопрен). Кристаллизация, которая наблюдается, как правило, при высоких степенях растяжения, приводит к существенным отклонениям экспериментальной кривой нагрузка — удлинение от теоретической. Модуль эластичности резко возрастает. При кристаллизации выделяется тепло, что сильно увеличивает разогрев деформируемого эластомера. Таким образом, закономерности деформации реальных эластомеров заметно отличаются от закономерностей деформации идеальных каучуков [36—44]. [c.88]

    Известно, чтй ряд каучуков при серной вулканизации Дак)Т ненаполненные резины с высокой прочностью. Это —каучуки регулярного строения, способные к кристаллизации НК, синтетический полиизопрен с высоким содержанием г ис-1,4-звеньев, некоторые типы этилен-пропилен-диеновых каучуков, транс-полипентена-мер, полихлоропрен и др. При растяжении резин на основе этих каучуков образуются микрокристаллиты, которые играют роль полифункциональных узлов сетки по-видимому, их действие сходно с действием частиц активного наполнителя. Действительно, нарастание напряжения при растяжении резин, полученных на основе кристаллизующихся каучуков, происходит быстрее, чем при растяжении резин на основе аморфных каучуков, имеющих равную плотность узлов вулканизационной сетки [35]. [c.85]

    Строение полиизопренов, получаемых в присутствии циглеровского и содержащего литий катализаторов, обнаруживает небольшие, но вполне отчетливые различия. Измерение поглощения в инфракрасной области показывает, что в первом содержится около 95% уис-1,4-структур, в то время как во втором около 93%. Литиевые каучуки при температуре —25° С кристаллизуются медленно или вообще не кристаллизуются для кристаллизаци1г цпглеровских каучуКов требуется примерно 25—50 ч., т. е. значительно больше, чем необходимо для кристаллизации натурального каучука. [c.200]

    Таким образом, полиизопрен, полихлоропрен, полибутадиен и другие полимеры этого класса обладают звеньями, которые могут существовать в транс-1,4- и 4-конфигурациях, а также содержать виниловые боковые радикалы в О- или -конфигурациях. В природных диеновых полимерах подавляющее число звеньев находится либо в цис- (каучук гевеи), либо в транс-конфигурации (гуттаперча). Эти полимеры легко кристаллизуются, и их поведение при плавлении типично для гомополиме-рЬв. Однако состав или микроструктура цепей синтетических диеновых полимеров, определяющие их кристаллизационное поведение, зависят от методов и механизма полимеризации. Как и следовало ожидать, сосуществование цис- и г/7анс-конфигура-ций в одной цепи вызывает заметные отклонения от присущего гомополимерам поведения при плавлении и кристаллизации. [c.99]


    Более сложным является случай смешения двух кристаллизующихся каучуков Наиболее распространенным примером такой системы, являются резины на основе смеси 1,4-г ыс-полнизопрена и 1,4-г ыс-полибута-диена (СКИ и СКД). Исследование температурной зависимости скорости кристаллизации показало, что для смесей полимеров в широком диапазоне их соотношений сохраняются два максимума скорости кристаллизации, совпадающие (с точностью до Г) с температурами максимальной скорости кристаллизации дивинилового Т[ = = —55 °С) и изопренового Т = —25 °С) каучуков. При температуре Т[ = —55 °С полиизопрен практически не кристаллизуется и закономерности кристаллизации не отличаются от тех, которые наблюдаются для смесей дивинилового каучука с некристаллизующимися. То же происходит при Т = —25 С, где при малом содержании дивинилового каучука его можно рассматривать как некристаллизующийся. Независимая кристаллизация этих двух каучуков в смеси подтверждается й характером плавления. Однако при большом содержании дивинило- [c.148]

    ТПМ легко вулканизуется серой и перекисями, причем для достижения высоких значений прочности и модуля вулканизованного ТПМ требуется значительно меньше серы и ускорителей, чем для других каучуков с высокой ненасыщенностью. Вулканизаты ТПМ характеризуются высокой стойкостью к истиранию, несколько уступая в этом отношении только цис-полибу-тадиену. Они имеют хорошую устойчивость к старению и действию озона. ТПМ легко смешивается и совулканизуется с НК, синтетическим полиизопреном, цис-полибутадиеном, бутадиен-стирольным каучуком и даже со СКЭПТ. Основным недостатком ТПМ является пониженная морозостойкость, обусловленная большой склонностью к кристаллизации. Однако полагают, что этот недостаток можно преодолеть, регулируя его микроструктуру. [c.156]

    Стереорегулярный изопреновый каучук кристаллизуется при растяжении или понижении температуры, обладает низкой температурой хрупкости (около —70 °С), а вулканизаты его — низкой температурой стеклования (около —58°С). Наличие звеньев 1,2-и 3,4- затрудняет его кристаллизацию. Так, если СКИ-3 при —26 °С все же кристаллизуется при хранении с небольшой скоростью (в течение 140 ч), то изопреновые каучуки, полученные на литийорганическом катализаторе, вообще кристаллизуются только при растяжении. При этом кристаллическая фаза СКИ-Л возникает при значительно большем удлинении, чем для натурального каучука. Температура плавления кристаллитов как натурального, так и синтетического ц с-1,4-полиизопренов составляет около 25 °С. Содерл<ание кристаллической фазы в растянутом вулкани-зате натурального каучука достигает 40%, а синтетического изопренового не превышает 25%. Возможно, меньшая склонность к кристаллизации синтетических полиизоиренов (по сравнению с натуральным каучуком) обусловлена не только меньшей регулярностью их строения, но и тем, что в натуральном каучуке со- [c.107]

    Большинство синтетических полимерных непредельньих углеводородов (полибутадиен, полиизопрен и лх сополимеры), полученных полимеризацией соответст1В1ую Щих мономеров с адетал- п ическим натрием, в присутствии перекиеньк или диазосоединений, имеют нерегулярное строепие, построены из звеньев различной конфигурации и не способны к кристаллизации. [c.309]

    Важность этого открытия становится понятной, если учесть, что натуральный каучук представляет собой почти чистый с-полиизопрен и что недостатки синтетического каучука (высокое теплообразование и замедленная упругая релаксация) объясняются неспособностью синтезированного полимера воспроизвести эту природную структуру. Применение стереоспецифических катализаторов привело к синтезу практически чистого г ис-полиизо-прена. Полибутадиен с высоким содержанием г ис-формы способен кристаллизоваться при низкой температуре, но кристаллизация может быть, однако, предотвращена путем снижения содержания г мс-формы до 80% без значительного ухудшения других свойств. Винилиде-ны еще недостаточно исследованы, чтобы можно было судить об их ценности. Они образуют каучук с интересными, но не выдающимися свойствами и, может быть, дадут возможность получить новые типы полимерных соединений для специальных целей. [c.92]

    Полидиметилбутадиен вследствие симметричного строения несколько более способен к кристаллизации, чем полиизопрен, изготовленный по старому способу (нестереоспецифический) [71]. Однако пока не удалось еще получить этот полимер с высокой степенью кристалличности. Поэтому и определение структуры пока еще невозможно. [c.460]

    Необходимо также отметить, что некоторые свойства макромолекул, имеющие решающее значение для поведения полимеров в массе, слабо связаны с их поведением в растворе или же совсем не проявляют такой связи. Например, несмотря на принципиальную возможность оценки высоты потенциального энергетического барьера, который должен быть преодолен находящейся в растворе цепной молекулой при изменении своей формы, эффекты, являющиеся следствием этой внутренней вязкости, выран ены недостаточно. Поэтому на основе лишь одних свойств растворов было бы трудно предсказать, что полиизопрен — весьма эластичный каучук, в то время как полиметилметакрилат не обладает такими свойствами. Другое ограничение, присущее методам исследования растворов полимеров, заключается в их неспособности предсказать явления, обусловленные кристаллизацией полимеров. Рассмотрим, например, полигексаметиленадипамид (найлон-6,6) и полиамид, получающийся в результате конденсации адипиновой кислоты со смесью пентаметилен-диамина и гептаметилендиамина. Растворы этих полиамидов, по-видимому, не различаются по своим свойствам, а поведение этих материалов в массе крайне различно. Вследствие равных расстояний между амидными связями найлон-6,6 представляет собой высококристаллический продукт, в то время как беспорядочное распределение этих связей в сополимере делает его кристаллизацию невозможной. [c.35]


Смотреть страницы где упоминается термин Полиизопрен кристаллизация: [c.20]    [c.152]    [c.190]    [c.228]    [c.206]    [c.56]   
Кристаллизация полимеров (1966) -- [ c.100 ]




ПОИСК





Смотрите так же термины и статьи:

Полиизопрен



© 2024 chem21.info Реклама на сайте