Справочник химика 21

Химия и химическая технология

Статьи Рисунки Таблицы О сайте English

Теплота гидратации сольватации

    Определение реальных энергий (теплот) гидратации отдельных ионов. Энтропии гидратации ионов. С помощью модельных методов определяются химические энергии сольватации, так как В них не учитывается поверхностный потенциал на границе жидкость— вакуум XI- Поскольку пока величину нельзя ни изме-1)ить, ни рассчитать (она отвечает разности потенциалов между точками, расположенными в двух разных фазах), химическая энергия гидратации определяется с точностью до некоторой неопределенной постоянной. Рекомендуемые разными авторами значения /р10 для воды отличаются на 0,5 В, что может дать ощибку в определении энергии гидратации однозарядного иона порядка БО кДж-моль- . Вероятные значения лежат внутри =Р0,2 В. Многие авторы принимают В. Если это значение от- [c.62]


    В начальной стадии набухания происходит сольватация - энергетическое взаимодействие растворителя с полимером. Растворитель разрывает часть межмолекулярных связей в полимере и образует с ним свои связи. Сольватированный растворитель, вследствие перестройки его структуры, сжимается, и его плотность увеличивается. Это приводит к контракции объем набухшего полимера оказывается меньше суммы исходных объемов полимера и растворителя. При этом выделяется теплота - теплота сольватации (теплота набухания), в частности, в случае воды и водных растворов - теплота гидратации, и развивается давление - давление набухания. Степень контракции зависит от природы растворителя и полимера, а также от плотности упаковки последнего. Чем меньше плотность упаковки, тем сильнее выражена контракция, больше теплота сольватации и давление набухания. Дальнейшее набухание с поглощением больших количеств растворителя происходит уже без выделения теплоты. [c.160]

    В сильных электролитах при больших разведениях многие величины, характеризующие свойства растворенных веществ, оказываются аддитивно складывающимися из соответствующих свойств ионов. Такими величинами являются кажущийся объем соли, теплота гидратации, сжимаемость и некоторые другие. Это естественно, поскольку при полной диссоциации соли в разбавленном растворе свойства одних ионов никак не влияют на взаимодействие других ионов с растворителем. Однако представление того или иного измеренного (вернее, вычисленного по результатам измерений) термодинамического свойства растворенной соли как суммы свойств ионов этой соли и нахождение величины слагаемых этой суммы невозможно без использования какого-либо более или менее произвольного предположения. Теплоты (энергии) гидратации отдельных ионов могут быть получены из вычисленных по уравнению (XVI, 55) теплот гидратации солей, если предположить, что энергии гидратации ионов и С1 одинаковы (с учетом различия в ориентировке молекул воды около аниона и катиона) . Другой метод определения теплоты гидратации заключается в подборе аддитивных слагаемых таким образом, чтобы величины энергий сольватации ионов линейно зависели от величин, обратных радиусам ионов. Вычисленные разными способами теплоты гидратации того или другого иона полуколичественно согласуются между собой. Теплоты гидратации одновалентных ионов имеют величины по- [c.420]


    Изучение ионных теплот гидратации показало, что их величины зависят от радиусов ионов (рис. 57). Теплота гидратации с ростом радиусов уменьшается уменьшается и число молекул растворителя, связанных с ионом. Этим объясняется наблюдаемое уменьшение электропроводности растворов от к и наоборот рост ее в этом порядке в расплавах их солей, где сольватация отсутствует. [c.175]

    Таким образом, взаимодействие растворителя с ионами сопровождается энергетическими изменениями Q, носящими название энергий или теплот гидратации (сольватации). [c.92]

    Теплоту, энтропию и энергию гидратации исследовали, основываясь на экспериментально определяемых теплотах растворения и энергиях решеток солей. Для случая бесконечного разведения раствора кристаллического электролита первая интегральная теплота растворения АЯо равна сумме энергии решетки и общей теплоты гидратации (сольватации) катионов и анионов. Энергия решетки определяется как изменение энтальпии, отвечающее взаимному удалению ионов решетки на бесконечно большое расстояние  [c.254]

    При нуклеофильном замещении имеет место атака молекулы нуклеофилом, который предоставляет для образования новой связи свои электроны. Электроны разрывающейся связи уходят вместе с освобождающимся ионом. Такие реакции идут только в жидкой фазе, обычно в растворах. В газовой фазе они идти не могут, так как диссоциация, например, связи С—С1 требует затраты более 220 ккал/моль. В жидкой фазе затрата энергии на диссоциацию значительно ниже (около 60 ккал/моль) благодаря выделению теплоты гидратации (сольватации) ионов. [c.102]

    Здесь АЯ1 — теплота, затрачиваемая на разрушение кристаллической решетки ДЯг — теплота гидратации (сольватации), т. е. теплота химического взаимодействия молекул растворяющегося вещества с молекулами растворителя. [c.61]

    Н. Н. Семенов отметил, что теплоты гидратации (в общем случае сольватации) имеют большое значение для направления редокс-процессов с участием гидратированных ионов. [c.258]

    Теплотой растворения называют количество тепла, выделяемое или поглощаемое при растворении одной весовой единицей вещества. Если растворенное вещество вступает в химическое взаимодействие с растворителем, то теплота растворения включает и теплоту сольватации или теплоту гидратации растворенного материала. [c.107]

    Следовательно, теплоты гидратации ионов очень велики и имеют порядок величины теплот химических реакций. Хотя последний из рассмотренных процессов протекает с возрастанием числа частиц, однако для него А5 < О (—19,35 э. е.). Это объясняется значительным упорядочивающим влиянием молекул воды в результате сольватации ими ионов. [c.177]

    По общепринятым сейчас представлениям, истоки которых можно найти в работах И. А. Каблукова (1891), энергия, обеспечивающая разрыв связей в молекуле пли в решетке кристалла, а следо-вател[)Ио, и появление попов, выделяется в самом процессе электролитической диссоциации и представляет собой результат взаимодействия между растворяемым веществом и растворителем. Благодаря этому взаимодействию образуются комплексы, состоящие из молекул растворителя, т. е. сольватированные или, в случае водных растворов, гидратированные ионы. Энергетические эффекты, наблюдающиеся ири этом, были названы, по предложению Фаянса (1915), энергиями сольватации АОс. = ис) или, в водных средах, гидратации (—А0,.= 7г), а соответствующие тепловые эффекты — теплота-ми сольватации (—АНс= с.) и гидратации (—АЙг = ()г)- [c.47]

    Теплоты гидратации и числа сольватации разных ионов [c.100]

    Метод Бернала и Фаулера. Поскольку энергия сольватации небольших ионов, как следует из логики, определяется главным образом кулоновскими силами и может быть принята обратно пропорциональной ионному радиусу, тогда для такой соли как KF (г и rj в кристалле), индивидуальные теплоты гидратации ионов могут быть найдены делением пополам значений теплоты гидратации соли. Для К+ и F" этот метод дает 95,5 ккал/моль. Учитывая поправки, связанные с несимметричным пространственным расположением воды вокруг ионов, были внесены поправки, изменившие теплоту гидратации до величины —94,0 для К+ и —97,0 для F". На основе этих данных можно определить энтальпии гидратации других ионов. [c.143]

    Как известно, растворение хлористого водорода в воде сопровождается довольно сильным разогреванием образующегося раствора. Действительно, энергия связи водорода и хлора в молекуле H I равна 1360 кДж/моль. Теплота гидратации протона равна И(Х) кДж/моль, что в сумме с уже приводившейся теплотой сольватации иона С1 дает общую теплоту гидратации H I 1450 кДж/моль, а это заметно больше энергии связи Н— I. Вот почему при образовании раствора соляной кислоты и происходит довольно сильное разогревание. [c.31]

    Другой причиной электролитической диссоциации, на которую указывал Д.И. Менделеев, является химическое взаимодействие растворенного вещества с растворителем. В результате такого взаимодействия образуются химические соединения ионов с растворителем, что приводит к измепепию энергии ионов в растворе и сопровождается выделением теплоты сольватации (в воде - теплоты гидратации). [c.12]


    Отсюда вытекает, что для определения химических теплот гидратации или сольватации иоиов необходимы данные о теплотах растворения и об энергии кристаллической решетки. [c.298]

    Основной вопрос, который стоит при определении теплот и энергий сольватации ионов, заключается в том, как разделить полученный суммарный эффект на теплоту или энергию сольватации аниона и катиона. Все методы разделения, которые были предложены до сих пор, имеют свои недостатки и к ним нужно относиться критически. В свое время было предложено делить теплоту гидратации КС1 поровну. Это предложение основывалось патом, что ионы калия и хлора имеют изо-электронные оболочки. Если от калия отделить один электрон [c.301]

    Приводим эти данные, из которых следует близость теплот гидратации и сольватации ионов (табл. 40). [c.330]

    Так как различие между энтальпией и изобарным потенциалом для конденсированных систем невелико, то по теплоте растворения и энергии кристаллической решетки можно определить теплоту гидратации или сольватации ионов . [c.182]

    Ланге и К. П. Мищенко [17] в 1930 г. предложили в основу разделения теплот сольватации электролитов на ионные составляющие положить допущение прхгближенного равенства химических теплот гидратации ионов цезия и иода АЯр Допущение [c.69]

    Имеется множество экспериментальных данных о теплотах гидратации солей, которые совпадают между собой в пределах десятых долей процента. В то же время имеющиеся данные для отдельных ионов сильно различаются между собой, что не является результатом экспериментальных ошибок, а следствием разных методов стандартизации. Вероятно, наиболее надежными являются данные о теплотах, энтропиях и энергиях сольватации, полученные в результате совместного использования школы Мищенко, [c.187]

    Разные исследователи принимают различное значение величины сродства молекул воды и различные значения теплоты сольватации иона гидроксония. Мищенко принимает теплоту гидратации 10 ккал г-ион [c.224]

    Растворение твердых веществ в воде сопровождается поглощением или выделением тепла. Количество тепла, поглощаемого или выделяемого при растворении одного моля вещества, называется теплотой растворения. Разрушение кристаллической решетки вещества связано с затратой энергии, а поэтому растворение твердых веществ в жидкостях большей частью сопровождается поглощением тепла. Одновременно с разрушением кристаллической решетки идет сольватация (соединение) растворяемых частиц с молекулами растворителя, при этом выделяется энергия. Поэтому общий тепловой эффект растворения Q в основном определяется уравнением Q=(fl—<7г, где g — теплота гидратации 2— энергия, идущая на разрушение кристаллической решетки. Это уравнение показывает если то при растворении тепло выделяется, если же ,< 2. то тепло поглощается [c.46]

    Тепловой эффект растворения соли в очень большом количестве воды, при образовании бесконечно разбавленного рас- 1 твора, может быть представлен как алгебраическая сумма двух эффектов изменения теплосодержания соли при разрушении кристаллической решетки и удалении ионов на бесконечно большие расстояния друг от друга (эндо-эффект, так называемая энергия решетки ДНреш) и изменения теплосодержания при взаимодействии растворяемых частиц с растворителем (экзо-эффект, т. е. химическая теплота гидратации, сольватации ДН, . Обе эти величины — порядка сотен тысяч малых калорий, и наблюдаемая теплота растворения является их алгебраической суммой (порядка от сотен калорий до нескольких десятков тысяч калорий), причем знак ее зависит от того, какое из двух слагаемых численно больше. Теплота растворения при бесконечном разведении, таким образом, равна [c.44]

    Энергии и теплоты сольватации электролитов были рассчитаны впервые Борном и Габером (1919) фи помощи циклов, основанных на термохимическом законе Гесса. Так, например, при вычислении теплоты гидратации хлорида натрия 1 моль твердой кристаллической соли мысленно переводят в бесконечно большсш объем воды при зтом выделяется теплота растворения —AHl, = Qь Тот же раствор хлорида натрия можно получить, если сначала разрушить кристаллическую решетку с образованием ионов натрия и хлора в газовой фазе на это затрачивается элергия, равная энергии решетки хлорида натрия —Д(5р = — V Затем эти ионы переводят в бесконечно большой объем воды, при этом освобождается суммарная теплота гидратации ионов натрия и хлора — Д/У , + [c.48]

    Разные исследователи принимают различное значение величины сродства молекул воды и различные значения теплоты сольватации иона гидроксония. Миш,енко принимает теплоту гидратации 459,4-10 Дж/моль (110 ккал/моль) и, следовательно, величину Ян о = 643-10 Дж/моль (154 ккал/моль), Яцимирский принимает Ян о = 837 -10 Дж/моль (200,0 ккал/моль) и = 314-10= Дж/моль (75 ккал/моль) (по Райсу), ЯнгО = 711 -10 Дж/моль (170 ккал/моль) (по Юзу) и 770-10 Дж/моль (184 ккал/моль) (по Бриглебу). Кондратьев и Соколов на основании предположения о равенстве энергии изоморфных кристаллов NH4GIO4 и H3O IO4 нашли ЯнгО = 778-10= Дж/моль (186,6 ккал/моль) и Яг= 297 X X 10= Дж/моль (71,3 ккал/моль). Несмотря на большой разброс данных, из них с ясностью следует, что высокое значение энергии сольватации протона обусловлено большой величиной протонного сродства. [c.196]

    Основной вопрос, которы возникает при определении теплот (и энергий) сольватации ионов, заключается в том, как разделить полученный суммарный эффект на теплоты (и энергии) сольватации аниона и катиона. Все методы разделения, которые были предложены до сих пор, имеют свои недостатки, и к ним нужно относиться критически. В свое время было предложено делить теплоту гидратации КС поровну. Это предложение основывалось на том, что ионы калия и хлора имеют изо-электронные оболочки. Если от калия отделить один электрон и присоединить егОчК хлору, то у каждого иона будет по 18 электронов. В дальнейшем этот прием был подвергнут критике на том основании, что, хотя оболочки этих ионов изоэлектронны, радиус иона калия меньше радиуса иона хлора. [c.185]

    В результате рассуждений и расчетов, отчасти отраженных в гл. IV, посвященной проблеме сольватации, мы пришли к заключению, что при выборе пары ионов, п. м. теплоемкости или энтропии которых можно считать приближенно равными, нельзя опираться на како11-либо один признак близость кристаллохимических радиусов или равенство теплот гидратации, как это пытались делать и мы в процессе анализа опытных данных. Как мы видели выше (гл. IV), само содержание понятия равенство радиусов двух ионов зависит от того, в связи с каким явлением оно рассматривается. Так, например, при модельных расчетах теплот сольватации оказалось необходимым учитывать асимметрию диполя воды (0,25)А, добавляя эту величину к кристаллохимическим радиусам катионов и вычитая ее из в случае аниона. С этой точки зрения радиусы пар и СГ, КН и СГ и С8+ и Г в водных растворах близки друг к другу, и использование наиболее сходной в этом отношении пары Сз и Г, [c.222]


Смотреть страницы где упоминается термин Теплота гидратации сольватации : [c.179]    [c.46]    [c.107]    [c.194]    [c.55]    [c.58]    [c.100]    [c.97]    [c.97]    [c.162]    [c.72]    [c.68]    [c.75]    [c.60]    [c.59]   
Практические работы по физической химии (1961) -- [ c.46 ]




ПОИСК





Смотрите так же термины и статьи:

Гидратация теплота

Сольватация



© 2025 chem21.info Реклама на сайте